【題目】為加強(qiáng)公民的節(jié)水意識,合理利用水資源.某市對居民用水實(shí)行階梯水價(jià),居民家庭每月用水量劃分為三個(gè)階梯,一、二、三級階梯用水的單價(jià)之比等于1:1.5:2.如圖折線表示實(shí)行階梯水價(jià)后每月水費(fèi)y(元)與用水量xm3之間的函數(shù)關(guān)系.其中線段AB表示第二級階梯時(shí)y與x之間的函數(shù)關(guān)系.
(1)寫出點(diǎn)B的實(shí)際意義;
(2)求線段AB所在直線的表達(dá)式;
(3)某戶5月份按照階梯水價(jià)應(yīng)繳水費(fèi)102元,其相應(yīng)用水量為多少立方米?
【答案】(1)圖中B點(diǎn)的實(shí)際意義表示當(dāng)用水25m3時(shí),所交水費(fèi)為90元;(2);(3)27.
【解析】
試題分析:(1)根據(jù)圖象的信息得出即可;
(2)首先求出第一、二階梯單價(jià),再設(shè)出解析式,代入求出即可;
(3)因?yàn)?02>90,求出第三階梯的單價(jià),得出方程,求出即可.
試題解析:(1)圖中B點(diǎn)的實(shí)際意義表示當(dāng)用水25m3時(shí),所交水費(fèi)為90元;
(2)設(shè)第一階梯用水的單價(jià)為x元/m3,則第二階梯用水單價(jià)為1.5 x元/m3,設(shè)A(a,45),則,解得:,∴A(15,45),B(25,90),設(shè)線段AB所在直線的表達(dá)式為,則:,解得:,∴線段AB所在直線的表達(dá)式為;
(3)設(shè)該戶5月份用水量為xm3(x>90),由第(2)知第二階梯水的單價(jià)為4.5元/m3,第三階梯水的單價(jià)為6元/m3,則根據(jù)題意得90+6(x﹣25)=102,解得,x=27.
答:該用戶5月份用水量為27m3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接正方形,AB=4,PC、PD是⊙O的兩條切線,C、D為切點(diǎn).
(1)如圖1,求⊙O的半徑;
(2)如圖1,若點(diǎn)E是BC的中點(diǎn),連接PE,求PE的長度;
(3)如圖2,若點(diǎn)M是BC邊上任意一點(diǎn)(不含B、C),以點(diǎn)M為直角頂點(diǎn),在BC的上方作∠AMN=90°,交直線CP于點(diǎn)N,求證:AM=MN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下面是按照一定規(guī)律畫出的“數(shù)形圖”,經(jīng)研究可以發(fā)現(xiàn):圖 比圖 多出2個(gè)“樹枝”,圖 比圖 多出4個(gè)“樹枝”,圖 比圖 多出8個(gè)“樹枝”,照此規(guī)律,圖 比圖 多出個(gè)“樹枝”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果影劇院的座位8排5座用(8,5)表示,那么(4,6)表示( )
A. 6排4座 B. 4排6座
C. 4排4座 D. 6排6座
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級收費(fèi)制度.若每月用水量不超過14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過14噸,則超過部分每噸按市場價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場價(jià)分別是多少?
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請寫出y與x之間的函數(shù)關(guān)系式;
(3)小明家5月份用水26噸,則他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)實(shí)踐與操作:利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法);
①作AB的垂直平分線交AB于點(diǎn)D,連接CD;
②分別作∠ADC、∠BDC的平分線,交AC、BC于點(diǎn)E、F.
(2)求證:CE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:△ABC在正方形網(wǎng)格中
(1)請畫出△ABC向左平移5個(gè)單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于點(diǎn)O對稱的△A2B2C2;
(3)在直線MN上求作一點(diǎn)P,使△PAB的周長最小,請畫出△PAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,且DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com