【題目】如圖,在四邊形ABCD中,AC⊥CD于點(diǎn)C,BD平分∠ADC交AC于點(diǎn)E,∠1=∠2.
(1) 請(qǐng)完成下面的說理過程.
∵BD平分∠ADC(已知)
∴ (角平分線的定義)
∵∠1=∠2(已知)
∴
∴AD∥BC( )
(2)若∠BCE=20°,求∠1的度數(shù).
【答案】(1)∠2=∠3,∠1=∠3,內(nèi)錯(cuò)角相等,兩直線平行;(2)35°
【解析】
(1)根據(jù)角平分線的定義,及平行線的判定定理即可求證;
(2)根據(jù)平行線的性質(zhì)定理,可得∠ADC+∠BCD=180°,求得∠ADC度數(shù),由(1)得∠1=∠2=∠3,即可求得∠1度數(shù).
(1)∵BD平分∠ADC(已知)
∴∠2=∠3(角平分線的定義)
∵∠1=∠2(已知)
∴∠1=∠3
∴AD∥BC(內(nèi)錯(cuò)角相等,兩直線平行)
故答案為:∠2=∠3,∠1=∠3,內(nèi)錯(cuò)角相等,兩直線平行
(2)∵AC⊥CD
∴∠ACD=90°
∵∠BCE=20°
∴∠BCD=20°+90°=110°
∵AD∥BC
∴∠ADC+∠BCD=180°
∴∠ADC=180°-110°=70°
∵∠1=∠2=∠3=35°
故答案為:35°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為2的⊙O中,弦AB長(zhǎng)為2.
(1)求點(diǎn)O到AB的距離.
(2)若點(diǎn)C為⊙O上一點(diǎn)(不與點(diǎn)A,B重合),求∠BCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】趙州橋的主橋拱是圓弧形,它的跨度(弧所對(duì)的弦)長(zhǎng)為37.4m,拱高(弧的中點(diǎn)到弦的距離)為7.2m,請(qǐng)求出趙州橋的主橋拱半徑(結(jié)果保留小數(shù)點(diǎn)后一位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法①△ABC中,若∠A+∠B=90°,則△ABC是直角三角形;②已知正n邊形的一個(gè)內(nèi)角為140,則這個(gè)正多邊形的邊數(shù)是9;③一個(gè)多邊形的內(nèi)角中最多有3個(gè)銳角;④三角形的外角一定大于內(nèi)角;⑤若不等式組的整數(shù)解恰好有2個(gè),則m的取值范圍是,其中說法正確的是_____________________(填寫說法正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015隨州)甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為t(單位:小時(shí)),s與t之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:
①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;
②出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;
③出發(fā)3小時(shí)時(shí),甲、乙同時(shí)到達(dá)終點(diǎn);
④甲的速度是乙速度的一半.
其中,正確結(jié)論的個(gè)數(shù)是( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點(diǎn)B落在點(diǎn)E處,CE交AD于點(diǎn)F,則△AFC的面積等于___.
【答案】
【解析】
由矩形的性質(zhì)可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質(zhì)和折疊的性質(zhì)可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長(zhǎng),即可求△AFC的面積.
解:四邊形ABCD是矩形
,,
,
折疊
,
在中,,
,
.
故答案為:.
【點(diǎn)睛】
本題考查了翻折變換,矩形的性質(zhì),勾股定理,利用勾股定理求AF的長(zhǎng)是本題的關(guān)鍵.
【題型】填空題
【結(jié)束】
12
【題目】某公司要招聘一名新的大學(xué)生,公司對(duì)入圍的甲、乙兩名候選人進(jìn)行了三項(xiàng)測(cè)試,成績(jī)?nèi)绫硭荆鶕?jù)實(shí)際需要,規(guī)定能力、技能、學(xué)業(yè)三項(xiàng)測(cè)試得分按5:3:2的比例確定個(gè)人的測(cè)試成績(jī),得分最高者被錄取,此時(shí)______將被錄。
得分項(xiàng)目 | 能力 | 技能 | 學(xué)業(yè) |
甲 | 95 | 84 | 61 |
乙 | 87 | 80 | 77 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=∠C,點(diǎn)D在BC上,點(diǎn)E在AC上,連接DE且∠ADE=∠AED
(1)若∠B=70°,∠ADE=80°,求∠BAD,∠CDE.
(2)當(dāng)點(diǎn)D在BC(點(diǎn)B,C除外)邊上運(yùn)動(dòng)時(shí),且點(diǎn)E在AC邊上,猜想∠BAD與∠CDE的數(shù)量關(guān)系是,并證明你的猜想.
(3)當(dāng)點(diǎn)D在BC(點(diǎn)B,C除外)邊上運(yùn)動(dòng)時(shí),且點(diǎn)E在AC邊上,若∠BAD=25°,求∠CDE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年5月,某城遭遇暴雨水災(zāi),武警戰(zhàn)士乘一沖鋒舟從A地逆流而上,前往C地營(yíng)救受困群眾,途經(jīng)B地時(shí),由所攜帶的救生艇將B地受困群眾運(yùn)回A地,沖鋒舟繼續(xù)前進(jìn),到C地接到群眾后立刻返回A地,途中曾與救生艇相遇,沖鋒舟和救生艇距A地的距離y(千米)和沖鋒舟出發(fā)后所用時(shí)間x(分)之間的函數(shù)圖象如圖所示,假設(shè)群眾上下沖鋒舟和救生艇的時(shí)間忽略不計(jì),水流速度和沖鋒舟在靜水中的速度不變.
(1)沖鋒舟從A地到C地的時(shí)間為 分鐘,沖鋒舟在靜水中的速度為 千米/分,水流的速度為 千米/分.
(2)沖鋒舟將C地群眾安全送到A地后,又立即去接應(yīng)救生艇,已知救生艇與A地的距離y(千米)和沖鋒舟出發(fā)后所用時(shí)間x(分鐘)之間的函數(shù)關(guān)系式為y=kx+b,若沖鋒舟在距離A地 千米處與救生艇第二次相遇,求k、b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com