【題目】如圖,已知△ABC,AB=AC,若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結論一定正確的是( )
A.AE=EC
B.AE=BE
C.∠EBC=∠BAC
D.∠EBC=∠ABE
科目:初中數學 來源: 題型:
【題目】某校初三年級(1)班要舉行一場畢業(yè)聯歡會.規(guī)定每個同學分別轉動下圖中兩個可以自由轉動的均勻轉盤A、B(轉盤A被均勻分成三等份.每份分別標上1.2,3三個數宇.轉盤B被均勻分成二等份.每份分別標上4,5兩個數字).若兩個轉盤停止后指針所指區(qū)域的數字都為偶數(如果指針恰好指在分格線上.那么重轉直到指針指向某一數字所在區(qū)域為止).則這個同學要表演唱歌節(jié)目.請求出這個同學表演唱歌節(jié)目的概率(要求用畫樹狀圖或列表方法求解)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2013年9月23日強臺風“天兔”登錄深圳,伴隨著就是狂風暴雨梧桐山山坡上有一棵與水平面垂直的大樹,臺風過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示).已知山坡的坡角∠AEF=23°,量得樹干的傾斜角為∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=3m.
(1)求∠DAC的度數;
(2)求這棵大樹折斷前的高度?(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側與墻MN平行且距離為0.8米,已知小汽車車門寬AO為1.2米,當車門打開角度∠AOB為40°時,車門是否會碰到墻?請說明理由。(參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題背景
如圖1,在正方形ABCD的內部,作∠DAE=∠ABF=∠BCG=∠CDH,根據三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F三點(D,E,F三點不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)進一步探究發(fā)現,△ABD的三邊存在一定的等量關系,設 , , ,請?zhí)剿? , , 滿足的等量關系。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,E為CD上一點,分別以EA,EB為折痕將兩個角(∠D,∠C)向內折疊,點C,D恰好落在AB邊的點F處.若AD=2,BC=3,則EF的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經過A,B兩點,點P在線段OA上,從點O出發(fā),向點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以 個單位/秒的速度勻速運動,連接PQ,設運動時間為t秒.
(1)求拋物線的解析式;
(2)當t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2的正方形,點G是BC延長線上一點,連接AG,點E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F處.若△FDE的周長為5,△FCB的周長為17,則FC的長為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com