【題目】某商店購進甲、乙兩種商品,購進 4 件甲種商品比購進 5 件乙種商品少用 10 元,購 20 件甲種商品和 10 件乙種商品共用去 160 .

(1)求甲、乙兩種商品每件進價分別是多少元?

(2)若該商店購進甲、乙兩種商品共 140 件,都標價 10 元出售,售出一部分降價促銷, 以標價的八折售完所有剩余商品,以 10 元售出的商品件數(shù)比購進甲種商品件數(shù)少 20 件,該商店此次購進甲、乙兩種商品降價前后共獲利不少于 420 元,求至少購進甲種商品多少件?

【答案】(1)A種商品每件進價5元,B種商品每件進價6元;(2)A種商品至少購進25.

【解析】分析: 1)設(shè)甲種商品每件進價元,乙種商品每件進價元,根據(jù)“購進 4 件甲種商品比購進 5 件乙種商品少用 10 元,購 20 件甲種商品和 10 件乙種商品共用去 160 元”可列方程組求解;

2)設(shè)至少購進A商品a件,根據(jù)購進A、B兩種商品降價前后共獲利不少于420元列出不等式解答即可.

詳解:

(1)設(shè)甲種商品每件進價元,乙種商品每件進價元,根據(jù)題意,得

答:A種商品每件進價5元,B種商品每件進價6.

(2)設(shè)甲種商品購進件,根據(jù)題意,得

解得

答:A種商品至少購進25.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一副直角三角尺疊放如圖1所示,現(xiàn)將45°的三角尺ADE固定不動,將含30°的三角尺ABC繞頂點A順時針轉(zhuǎn)動,使BC邊與三角形ADE的一邊互相平行.則∠BAD(0°<BAD<180°)所有可能符合條件的度數(shù)為________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD繞點A逆時針旋轉(zhuǎn)30°,得到平行四邊形AB′C′D′(點B′與點B是對應點,點C′與點C是對應點,點D′與點D是對應點),點B′恰好落在BC邊上,則∠C的度數(shù)等于(
A.100°
B.105°
C.115°
D.120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是由每個邊長都是1的小正方形構(gòu)成的網(wǎng)格,點O,A,B,M均為格點,P為線段OM上的一個動點.

(1)點B到OM的距離等于
(2)當點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形 ABCD 中,AC 是對角線,AB=CD,DAC+BCA=180°,BAC+ACD=90°,四邊形 ABCD 的面積是 18,則 CD 的長是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(﹣2,0)、B(4,0)、C(3,3)在拋物線y=ax2+bx+c上,點D在y軸上,且DC⊥BC,∠BCD繞點C順時針旋轉(zhuǎn)后兩邊與x軸、y軸分別相交于點E、F.

(1)求拋物線的解析式;
(2)CF能否經(jīng)過拋物線的頂點?若能,求出此時點E的坐標;若不能,說明理由;
(3)若△FDC是等腰三角形,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CEAB于點E,DFAB于點F,CE平分∠ACBDF平分∠BDE,

求證:ACED.

證明:∵CEABEDFABF(已知)

DF   (垂直于同一條直線的兩直線平行)

∴∠BDF=      

FDE=   (兩直線平行,內(nèi)錯角相等)

CE平分∠ACBDF平分∠BDE(已知)

∴∠ACE=ECB,EDF=BDF(角平分線的定義)

∴∠ACE=   (等量代換)

ACED   ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學生的個性化學習需求,某校就學生對知識拓展,體育特長、藝術(shù)特長和實踐活動四類選課意向進行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題:

1)求扇形統(tǒng)計圖中m的值;

2)補全條形統(tǒng)計圖;

3)已知該校有800名學生,計劃開設(shè)實踐活動類課程每班安排人,問學校開設(shè)多少個實踐活動類課程的班級比較合理?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在解決問題:已知a=,求2a28a+1的值,他是這樣分析與解的:

a===2

a2=

∴(a﹣2)2=3,a2﹣4a+4=3

∴a2﹣4a=﹣1

∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1

請你根據(jù)小明的分析過程,解決如下問題:

(1)化簡+++…+

(2)若a=,求4a28a+1的值.

查看答案和解析>>

同步練習冊答案