【題目】如圖,正方形OABC的邊長為6,A,C分別位于x軸、y軸上,點(diǎn)P在AB上,CP交OB于點(diǎn)Q,函數(shù)y=的圖象經(jīng)過點(diǎn)Q,若S△BPQ=S△OQC,則k的值為___.
【答案】16
【解析】
根據(jù)正方形的性質(zhì)可得出OC∥AB,從而得出△BPQ∽△OCQ,再根據(jù)S△BPQ=S△OCQ,即可得出點(diǎn)P的坐標(biāo),利用待定系數(shù)法求出直線OB、CP的解析式,聯(lián)立兩個解析式求出交點(diǎn)坐標(biāo)后再由反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出結(jié)論.
∵四邊形OABC為正方形,
∴OC∥AB,
∴△BPQ∽△OCQ,
∵S△BPQ=S△OCQ,
∴BP=AB.
∵正方形OABC的邊長為6,
∴點(diǎn)C(0,6),B(6,6),P(6,3),
利用待定系數(shù)法可求出:
直線OB的解析式為y=x,直線CP的解析式為
聯(lián)立OB、CP的解析式得:
解得:
∴Q(4,4).
∵函數(shù)y=的圖象經(jīng)過點(diǎn)Q,
∴k=4×4=16.
故答案為:16.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為“創(chuàng)建文明城市,構(gòu)建和諧社會”.更好的提高業(yè)主垃圾分類的意識,業(yè)主委員會決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱.若購買3個溫馨提示牌和4個垃圾箱共需580元,且每個溫馨提示牌比垃圾箱便宜40元.
(1)問:購買1個溫馨提示牌和1個垃圾箱各需多少元?
(2)如果需要購買溫馨提示牌和垃圾箱共10個,費(fèi)用不超過800元,問:最多購買垃圾箱多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司年終進(jìn)行業(yè)績考核,人事部門把考核結(jié)果按照A,B,C,D四個等級,繪制成兩個不完整的統(tǒng)計圖,如圖1,圖2.
參加考試的人數(shù)是______,扇形統(tǒng)計圖中D部分所對應(yīng)的圓心角的度數(shù)是______,請把條形統(tǒng)計圖補(bǔ)充完整;
若公司領(lǐng)導(dǎo)計劃從考核人員中選一人交流考核意見,求所選人員考核為A等級的概率;
為推動公司進(jìn)一步發(fā)展,公司決定計劃兩年內(nèi)考核A等級的人數(shù)達(dá)到30人,求平均每年的增長率精確到,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)O在對角線AC上,以OA的長為半徑的圓O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB=,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過點(diǎn)C作∠BCD=∠CAB交AB的延長線于點(diǎn)D,過點(diǎn)O作直徑EF∥BC,交AC于點(diǎn)G.
(1)求證:CD是⊙O的切線.
(2)若⊙O的半徑為2,∠BCD=30°.
①連接AE、DE,求證:四邊形ACDE是菱形.
②當(dāng)點(diǎn)P是線段AD上的一動點(diǎn)時,求PF+PG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,點(diǎn)C在⊙O上,CA=CD,∠CDA=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為4,
①用尺規(guī)作出點(diǎn)A到CD所在直線的距離;
②求出該距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的周長是18 cm,其對角線AC,BD相交于點(diǎn)O,過點(diǎn)O的直線分別與AD,BC相交于點(diǎn)E,F,且OE=2 cm,則四邊形CDEF的周長是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com