生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),當它的產(chǎn)品無利潤時就會停產(chǎn).現(xiàn)有一生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),其一年中各月獲得的利潤y和月份n之間的函數(shù)關系式為y=-n2+14n-24.
(1)該企業(yè)在哪個月份獲得的最大利潤,最大利潤是多少?
(2)該企業(yè)一年中應停產(chǎn)的是哪幾個月?
(3)你還有什么發(fā)現(xiàn)或建議?
分析:(1)根據(jù)解析式,利用配方法求出二次函數(shù)的最值即可;
(2)根據(jù)解析式,求出函數(shù)值y等于0時對應的月份,依據(jù)開口方向以及增減性,再求出y小于0時的月份即可解答,
(3)結合企業(yè)停產(chǎn)帶來的弊端分析得出答案即可.
解答:解:(1)∵y=-n2+14n-24
=-(n2-14n)-24,
=-[(n-7) 2-49]-24,
=-(n-7) 2+25,
∴該企業(yè)在7月份獲得的最大利潤,最大利潤是25;

(2)∵y=-n2+14n-24
=-(n-2)(n-12),
當y=0時,x=2或者x=12.
又∵圖象開口向下,
∴1月,y<0;2月、12月,y=0.
∴該企業(yè)一年中應停產(chǎn)的月份是1月、2月、12月.

(3)企業(yè)停產(chǎn)必然使工人流失,所以建議工廠上新的項目,利用1,2,12月份停產(chǎn)時再生產(chǎn)其他產(chǎn)品,不但可以增加企業(yè)收入,
也能增加工人收入,而且不至于因停產(chǎn)導致工人流失.
點評:此題主要考查了二次函數(shù)的應用以及二次函數(shù)最值求法等知識,利用判斷二次函數(shù)y>0、y=0、y<0,要把二次函數(shù)寫成交點式,看看圖象與x軸的交點,結合開口分析,進行判斷是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),當它的產(chǎn)品無利潤時就會及時停產(chǎn).現(xiàn)有一生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),其一年中獲得的利潤y和月份n之間函數(shù)關系式為y=-n2+14n-24,則該企業(yè)一年中應停產(chǎn)的月份是
1月、2月、12月

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),當它的產(chǎn)品無利潤時就會及時停產(chǎn).現(xiàn)有一生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),其一年中獲得的利潤y和月份n之間函數(shù)關系式為y=-n2+14n-24,則該企業(yè)一年中應停產(chǎn)的月份是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某企業(yè)是一家專門生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),經(jīng)過調(diào)研預測,它一年中獲得的利潤y(萬元)和月份n之間滿足函數(shù)關系式y(tǒng)=-n2+14n-24.
(1)若利潤為21萬元,求n的值.
(2)哪一個月能夠獲得最大利潤,最大利潤是多少?
(3)當產(chǎn)品無利潤時,企業(yè)會自動停產(chǎn),企業(yè)停產(chǎn)是哪幾個月份?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•南漳縣模擬)生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),當它的產(chǎn)品無利潤時就會及時停產(chǎn),現(xiàn)有一生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),一年中獲得利潤y與月份n之間的函數(shù)關系式是y=-n2+15n-36,那么該企業(yè)一年中應停產(chǎn)的月份是(  )

查看答案和解析>>

同步練習冊答案