【題目】在平面直角坐標系xOy中,的半徑是5,點A上一點,軸于點軸于點C,若四邊形ABOC的面積為12,寫出一個符合條件的點A的坐標______

【答案】

【解析】分析:設(shè)點A坐標為(x,y),由圓的半徑為5可得根據(jù)矩形的面積為xy=12xy=12,分別計算,可得點A的坐標.

詳解:設(shè)點A坐標為(x,y),

xy=12xy=12,

xy=12時,

可得,

x+y=7x+y=7,

①若x+y=7,y=7x,代入xy=12

解得:x=3x=4,

x=3時,y=4;當x=4時,y=3;

即點A(3,4)(4,3);

②若x+y=7,y=7x,代入xy=12得:

解得:x=3x=4,

x=3時,y=4;當x=4時,y=3;

即點A(3,4)(4,3);

xy=12時,

可得

x+y=1x+y=1,

③若x+y=1,y=1x,代入xy=12

解得:x=3x=4,

x=3時,y=4;當x=4時,y=3;

即點A(3,4)(4,3);

④若x+y=1,y=1x,代入xy=12得:

解得:x=3x=4,

x=3時,y=4;當x=4時,y=3;

即點A(3,4)(4,3);

故答案為:(3,4),(答案不唯一).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】你喜歡玩游戲嗎?現(xiàn)請你玩一個轉(zhuǎn)盤游戲.如圖所示的兩上轉(zhuǎn)盤中指針落在每一個數(shù)字上的機會均等,現(xiàn)同時自由轉(zhuǎn)動甲、乙兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針各指向一個數(shù)字,用所指的兩個數(shù)字作乘積.所有可能得到的不同的積分別為_______________________;數(shù)字之積為奇數(shù)的概率為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD,點EAD上一點,BE ACF點.

(1)若AE=AD,△AEF的面積為1時,求△ABC的面積;

(2)若AD = 4tanEAF =,求AF的長;

(3)若tanEAF =,連接DF,證明DF=AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一些數(shù)學問題的研究可以經(jīng)歷觀察、探究、發(fā)現(xiàn)、證明等過程.下面是對一個問題的部分研究過程:

(觀察),是否也能寫成分數(shù)的形式?

(探究1)設(shè)x,

0.555…可知,10x5.555…,

所以10xx5

解方程,得x

于是,得

所以,能寫成分數(shù)的形式

(探究2)仿照上面的方法,嘗試將寫成分數(shù)的形式.

(發(fā)現(xiàn))   

請你完成(探究2)的部分,并用一句話概括你的發(fā)現(xiàn)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O在直線AB,OCAB .RtΔODE中,∠ODE=90°,∠DOE=30°,先將ΔODE一邊OEOC重合(如圖1),然后將ΔODE繞點O按順時針方向旋轉(zhuǎn)(如圖2),當OEOC 重合時停止旋轉(zhuǎn).

(1)當∠AOD=80°時,則旋轉(zhuǎn)角∠COE的大小為____________ ;

(2)ODOCOB之間時,求∠AODCOE的值;

(3)ΔODE的旋轉(zhuǎn)過程中,若∠AOE=4COD時,求旋轉(zhuǎn)角∠COE的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.我們規(guī)定,有理數(shù)的整數(shù)部分就是取其最接近的兩個整數(shù)中的最小整數(shù),小數(shù)部分就是用原數(shù)減去整數(shù)部分,比如,小數(shù)3.25,最接近的兩個整數(shù)就是34,則整數(shù)部分取3,小數(shù)部分就是3.25-3=0.25,

13.14的整數(shù)部分是 ,小數(shù)部分是 ;

2-3.6的整數(shù)部分是 ,小數(shù)部分是

3)如果一個數(shù)的整數(shù)部分比小數(shù)部分大88.11,且整數(shù)部分的值恰好是小數(shù)部分的100倍,求這個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點DBC的平行線,與AB的延長線相交于點P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA;

3)當AB=6,AC=8時,求線段PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】人民商場準備購進甲、乙兩種牛奶進行銷售,若甲種牛奶的進價比乙種牛奶的進價每件少5元,其用90元購進甲種牛奶的數(shù)量與用100元購進乙種牛奶的數(shù)量相同.

1)求甲種牛奶、乙種牛奶的進價分別是多少元?

2)若該商場購進甲種牛奶的數(shù)量是乙種牛奶的3倍少5件,該商場甲種牛奶的銷售價格為49元,乙種牛奶的銷售價格為每件55元,則購進的甲、乙兩種牛奶全部售出后,可使銷售的總利潤(利潤=售價﹣進價)等于371元,請通過計算求出該商場購進甲、乙兩種牛奶各自多少件?

查看答案和解析>>

同步練習冊答案