如圖,已知直線AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度數(shù).

解:∵AB∥CD,
∴∠BEF+∠DFE=180°,
∵EM⊥FM,即∠EMF=90°,
∴∠FEM+∠EFM=90°,
∴∠BEM+∠DFM=90°,
∵∠MFD=25°,
∴∠MEB=90°-25°=65°.
分析:根據(jù)平行線的性質(zhì),可得∠BEF+∠DFE=180°,根據(jù)垂直的性質(zhì)可得∠FEM+∠EFM=90°,則可得∠BEM+∠DFM=90°,又∠MFD=25°,解答出即可.
點(diǎn)評(píng):本題主要考查了平行線的性質(zhì)和垂直的性質(zhì),正確觀察圖形,熟練掌握平行線的性質(zhì)和垂直的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,已知直線AB,CD相交于點(diǎn)O,OA平分∠EOC,∠EOC=70°,則∠BOD的度數(shù)等于
35
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,已知直線AB、CD相交于點(diǎn)O,OE平分∠BOC,如果∠BOE=50°,那么∠AOC=
80
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直線AB和CD相交于O點(diǎn),∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線AB∥CD,∠A=∠C=100°,E、F在CD上,且滿(mǎn)足∠DBF=∠ABD,BE平分∠CBF.
(1)直線AD與BC有何位置關(guān)系?請(qǐng)說(shuō)明理由.
(2)求∠DBE的度數(shù).
(3)若平行移動(dòng)AD,在平行移動(dòng)AD的過(guò)程中,是否存在某種情況,使∠BEC=∠ADB?若存在,求出其度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案