如圖,正比例函數(shù)的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A點(diǎn),過(guò)A點(diǎn)作x軸的垂線(xiàn),垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)在第一象限圖象上的點(diǎn)(點(diǎn)B與點(diǎn)A不重合),且B點(diǎn)的橫坐標(biāo)為1,在x軸上找一點(diǎn)P,使PA+PB最。驪點(diǎn)坐標(biāo)?
(1)y= (2)P點(diǎn)為(,0)
【解析】
試題分析:(1)根據(jù)反比例函數(shù)圖象上的點(diǎn)的橫縱坐標(biāo)的乘積為函數(shù)的系數(shù)和△OAM的面積為1可得k=2,即反比例函數(shù)的解析式為 y=.
(2)由正比例函數(shù) y=x的圖象與反比例函數(shù) y=(k≠0)在第一象限的圖象交于A點(diǎn)求得A為(2,1).要使PA+PB最小,需作出A點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C,并連接BC,交x軸于點(diǎn)P,P為所求點(diǎn).A點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C(2,﹣1),而B(niǎo)為(1,2),故BC的解析式為y=﹣3x+5,即可求得P點(diǎn)的坐標(biāo).
解:(1)設(shè)A點(diǎn)的坐標(biāo)為(a,b),則 b=
∴ab=k
∵ab=1,∴k=1
∴k=2,
∴反比例函數(shù)的解析式為 y=
(2)根據(jù)題意畫(huà)出圖形,如圖所示:
得=x,解得x=2或x=﹣2,
∵點(diǎn)A在第一象限,
∴x=2
把x=2代入y=得y=1,
∴A為(2,1)(4分)
設(shè)A點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為C,則C點(diǎn)的坐標(biāo)為(2,﹣1).
令直線(xiàn)BC的解析式為y=mx+n
∵B點(diǎn)的橫坐標(biāo)為1,
B為反比例函數(shù)在第一象限圖象上的點(diǎn),
∴xy=2,
∴y=2,
∴B為(1,2),
將B和C的坐標(biāo)代入得:,
解得:
∴BC的解析式為y=﹣3x+5(6分)
當(dāng)y=0時(shí),x=,
∴P點(diǎn)為(,0).(7分)
點(diǎn)評(píng):本題考查反比例函數(shù)和一次函數(shù)解析式的確定、圖形的面積求法、軸對(duì)稱(chēng)等知識(shí)及綜合應(yīng)用知識(shí)、解決問(wèn)題的能力.有點(diǎn)難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
3 |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
m |
x |
4 |
5 |
m |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010年上海市金山區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com