【題目】在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)是A(﹣2,3),B(﹣4,﹣1), C(2,0).點P(m,n)為△ABC內(nèi)一點,平移△ABC得到△A1B1C1 ,使點P(m,n)移到P(m+6,n+1)處.
(1)畫出△A1B1C1
(2)將△ABC繞坐標(biāo)點C逆時針旋轉(zhuǎn)90°得到△A2B2C,畫出△A2B2C;
(3)在(2)的條件下求BC掃過的面積.
【答案】(1)見解析;(2)見解析;(3).
【解析】
(1)根據(jù)P(m,n)移到P(m+6,n+1)可知△ABC向右平移6個單位,向上平移了一個單位,由圖形平移的性質(zhì)即可得出點A1,B1,C1的坐標(biāo),再順次連接即可;
(2)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫出旋轉(zhuǎn)后的圖形即可;
(3)先求出BC長,再利用扇形面積公式,列式計算即可得解.
解:(1)平移△ABC得到△A1B1C1,點P(m,n)移到P(m+6,n+1)處,
∴△ABC向右平移6個單位,向上平移了一個單位,
∴A1(4,4),B1(2,0),C1(8,1);
順次連接A1,B1,C1三點得到所求的△A1B1C1
(2)如圖所示:△A2B2C即為所求三角形.
(3)BC的長為:
BC掃過的面積
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為等腰直角△ABC的斜邊(AB為定長線段),E為AB的中點,F為AC延長線上的一個動點,線段FB的垂直平分線交線段CE于點O,D為垂足,當(dāng)F點運動時,給出下列四個結(jié)論,其中一定正確的結(jié)論有_____(請?zhí)顚懻_序號)
①O為△ABF的外心;②OF⊥OB;③CE+FC=AB;④FCOB=OEFB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】風(fēng)電已成為我國繼煤電、水電之后的第三大電源,風(fēng)電機(jī)組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設(shè)你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進(jìn)43米到達(dá)山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達(dá)最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“用三角板畫圓的切線”的畫圖過程.
如圖1,已知圓上一點A,畫過A點的圓的切線.
畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;
(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.
所以直線AD就是過點A的圓的切線.
請回答:該畫圖的依據(jù)是_______________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,CD⊥AB于E,CD=AB,DA、BC延長線交于F.
(1)若AC=12,∠ABC=30°,求DE的長;
(2)若BC=2AC,求證:DA=FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,直線y=﹣ x+4 與x軸相交于點A,與直線y= x相交于點P.
(1)求點P的坐標(biāo);
(2)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運動t秒時, F的坐標(biāo)為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出: S與a之間的函數(shù)關(guān)系式
(3)若點M在直線OP上,在平面內(nèi)是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1: 若存在直接寫出Q點坐標(biāo)。若不存在請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線ABy=kx﹣1分別交x軸、y軸于點A、B,直線CDy=x+2分別交x軸、y軸于點D、C,且直線AB、CD交于點E,E的橫坐標(biāo)為﹣6.
(1)如圖①,求直線AB的解析式;
(2)如圖②,點P為直線BA第一象限上一點,過P作y軸的平行線交直線CD于G,交x軸于F,在線段PG取點N,在線段AF上取點Q,使GN=QF,在DG上取點M,連接MN、QN,若∠GMN=∠QNF,求的值;
(3)在(2)的條件下,點E關(guān)于x軸對稱點為T,連接MP、TQ,若MP∥TQ,且GN:NP=4:3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年1月3日,嫦娥四號探測器自主著落在月球背面,實現(xiàn)人類探測器首次月背軟著陸.當(dāng)時,中國已提前發(fā)射的“鵲橋”中繼星正在地球、月球延長線上的L2點(第二拉格朗日點)附近,沿L2點的動態(tài)平衡軌道飛行,為嫦娥四號著陸器和月球車提供地球、月球中繼通信支持,保障嫦娥四號任務(wù)的完成與實施.如圖,已知月球到地球的平均距離約為38萬公里,L2點到月球的平均距離約為6.5萬公里.某刻,測得線段CL2與AL2垂直,∠CBL2=56°,則下列計算鵲橋中繼星到地球的距離AC方法正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC為等腰直角三角形,∠ACB=90°,AC=BC,點D和E分別是AC、AB上的點,CE⊥BD,垂足為F
(1)
①求證:D為AC的中點;②計算的值.
(2)若,如圖2,則= (直接寫出結(jié)果,用k的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com