【題目】如圖,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于點D,F(xiàn)是BE上一點,AF⊥AE,且C是線段AF的垂直平分線上的點,AF=2,則DF=________.
【答案】3.
【解析】
由題意可證的△ABF≌△ACE,可得△AEF為等腰直角三角形,取AF的中點O,連接CO交BE與點G,連接AG,可得△AGF, △AGE,△CEG均為等腰直角三角形,可得AG平行等于CE,可得四邊形AGCE為平行四邊形,可得FD的長.
解:如圖
Rt△ABC中,AB=AC,∠BAC=90°,∠ABC=∠ACB=45°,
又∠BAC=90°,BE⊥CE,∠DAE為∠BAC與EAF的公共角
∠BAF=∠CAE,
∠ABC=∠ACB=45°, BE⊥CE
∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,
∠ABF=∠ACE,
在△ABF與△ACE中,有
,△ABF≌△ACE,
AE=AF, △AEF為等腰直角三角形, 取AF的中點O,連接CO交BE與點G,連接AG,
C是線段AF的垂直平分線上的點,易得△AGF, △AGE,△CEG均為等腰直角三角形,
AF=2 AG=GE=CE=FG=2,
又AG⊥BE,CE⊥BE,可得AG∥CE,
四邊形AGCE為平行四邊形,
GD=DE=1,
DF=FG+GD=2+1=3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:∠MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,△A1B1A2. △A2B2A3、△A3B3A4……均為等邊三角形,若OA1=l,則△A6B6A7 的邊長為【 】
A.6 B.12 C.32 D.64
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小剛同學動手剪了如圖①所示的正方形與長方形紙片若干張.
(1)他用1張1號、1張2號和2張3號卡片拼出一個新的圖形(如圖②).根據(jù)這個圖形的面積關(guān)系寫出一個你所熟悉的乘法公式,這個乘法公式是 ;
(2)如果要拼成一個長為(a+2b),寬為(a+b)的大長方形,則需要2號卡片 張,3號卡片 張;
(3)當他拼成如圖③所示的長方形,根據(jù)6張小紙片的面積和等于打紙片(長方形)的面積可以把多項式a2+3ab+2b2分解因式,其結(jié)果是 ;
(4)動手操作,請你依照小剛的方法,利用拼圖分解因式a2+5ab+6b2= 畫出拼圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的5個小球,其中紅球3個,黑球2個.
(1)先從袋中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,將“摸出黑球”記為事件A,填空:若A為必然事件,則m的值為 , 若A為隨機事件,則m的取值為;
(2)若從袋中隨機摸出2個球,正好紅球、黑球各1個,求這個事件的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PB、PC分別是⊙O的切線,切點為B、C,PC、BA的延長線交于點D,DE⊥PO,交PO的延長線于點E.
(1)求證:∠DPO=∠EDB;
(2)若PB=3,DB=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD被直線EF所截,交點分別為G,H, ∠CHG=∠DHG=∠AGE.
(1)CD與EF有怎樣的位置關(guān)系?請說明理由.
(2)求∠CHG的同位角、內(nèi)錯角、同旁內(nèi)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規(guī)律,第6個圖形的小圓個數(shù)是( )
A. 56 B. 54 C. 44 D. 42
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點C與某建筑物底端B相距306米(點C與點B在同一水平面上),某同學從點C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測得該建筑物頂端A的俯視角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )
A.29.1米
B.31.9米
C.45.9米
D.95.9米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com