【題目】如圖,在ABC中,∠ABC=80°,BAC=40°.

(1)尺規(guī)作圖作出AB的垂直平分線DE,分別與AC、AB交于點D、E.并連結(jié)BD;(保留作圖痕跡,不寫作法)

(2)證明:ABC∽△BDC.

【答案】(1)畫圖見解析;(2)證明見解析.

【解析】(1)利用基本作圖作線段AB的垂直平分線;

(2)先根據(jù)線段垂直平分線的性質(zhì)得到BD=AD,則∠ABD=A=40°,再通過計算得到∠DBC=BAC,然后根據(jù)相似三角形的判定方法得到ABC∽△BDC.

(1)解:如圖,DE為所求;

(2)證明:∵DEAB的垂直平分線,

BD=AD,

∴∠ABD=A=40°,

∴∠DBC=ABC-ABD=80°-40°=40°,

∴∠DBC=BAC,

∵∠C=C

∴△ABC∽△BDC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工藝品專賣店計劃購進甲、乙兩種不同類型的木雕工藝品,已知件甲種工藝品的進價與件乙種工藝品的進價的和為元,件甲種工藝品的進價與件乙種工藝品的進價的和為元.

1)求每件甲種、乙種工藝品的進價分別是多少元;

2)如果購進甲種工藝品有優(yōu)惠,優(yōu)惠方法是:購進甲種工藝品超過件,超出部分可以享受折優(yōu)惠.若購進為正整數(shù))件甲種工藝品需要花費元,請你寫出的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線x=1為對稱軸的拋物線y=-x2+bx+c與x軸交于A、B兩點,其中點A的坐標(biāo)為(3,0).

(1)求點B的坐標(biāo);

(2)設(shè)點M(x1,y1)、N(x2,y2)在拋物線線上,且x1<x2<1,試比較y1、y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了促進學(xué)生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學(xué)生喜愛哪種社團活動,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:

(1)此次共調(diào)查了多少人?

(2)求文學(xué)社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);

(3)請將條形統(tǒng)計圖補充完整;

(4)若該校有1500名學(xué)生,請估計喜歡體育類社團的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BFDE相交于點G,連接CGBD相交于點H.給出如下幾個結(jié)論:

①∠ADE=DBF;②△DAE≌△BDG;③若AF=2DF,則BG=6GF;CGBD一定不垂直;⑤∠BGE=60°.其中正確的結(jié)論個數(shù)為( 。

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AD為斜邊BC上的中線,AEBC,CEAD,EC的垂直平分線FGACG,連接DG,若∠ADG24°,則∠B的度數(shù)為_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校舉辦了學(xué)生國學(xué)經(jīng)典大賽.比賽項目為:.唐詩;.宋詞;.論語;.三字經(jīng).比賽形式分單人組雙人組”.

(1)小麗參加單人組,她從中隨機抽取一個比賽項目,恰好抽中三字經(jīng)的概率是多少?

(2)小紅和小明組成一個小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則小紅和小明都沒有抽到論語的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形OBDC的對角線相交于點E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B.

(1)求反比例函數(shù)的解析式;

(2)若點E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D在⊙O的直徑AB的延長線上,CD切⊙O于點C,AECD于點E

(1)求證:AC平分∠DAE;

(2)若AB=6,BD=2,求CE的長.

查看答案和解析>>

同步練習(xí)冊答案