【題目】在平面直角坐標系xOy中,一次函數(shù) 的圖象是直線l1 , l1與x軸、y軸分別相交于A、B兩點.直線l2過點C(a,0)且與直線l1垂直,其中a>0.點P、Q同時從A點出發(fā),其中點P沿射線AB運動,速度為每秒4個單位;點Q沿射線AO運動,速度為每秒5個單位.
(1)寫出A點的坐標和AB的長;
(2)當點P、Q運動了多少秒時,以點Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時a的值.

【答案】
(1)解:∵一次函數(shù) 的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點,

∴y=0時,x=﹣4,

∴A(﹣4,0),AO=4,

∵圖象與y軸交點坐標為:(0,3),BO=3,

∴AB=5


(2)解:由題意得:AP=4t,AQ=5t, = =t,

又∠PAQ=∠OAB,

∴△APQ∽△AOB,

∴∠APQ=∠AOB=90°,

∵點P在l1上,

∴⊙Q在運動過程中保持與l1相切,

①當⊙Q在y軸右側(cè)與y軸相切時,設(shè)l2與⊙Q相切于F,由△APQ∽△AOB,得:

,

∴PQ=6;

故AQ=10,則運動時間為: =2(秒);

連接QF,則QF=PQ,

∵直線l2過點C(a,0)且與直線l1垂直,F(xiàn)Q⊥l2,

∴∠APQ=∠QFC=90°,AP∥FQ,

∴∠PAQ=∠FQC,

∴△QFC∽△APQ,

∴△QFC∽△APQ∽△AOB,

得: ,

,

∴QC= ,

∴a=OQ+QC=OC=

②如圖2,當⊙Q在y軸的左側(cè)與y軸相切時,設(shè)l2與⊙Q相切于E,由△APQ∽△AOB得: =

∴PQ= ,

則AQ=4﹣ =2.5,

∴則運動時間為: = (秒);

故當點P、Q運動了2秒或 秒時,以點Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,

連接QE,則QE=PQ,

∵直線l2過點C(a,0)且與直線l1垂直,⊙Q在運動過程中保持與l1相切于點P,

∴∠AOB=90°,∠APQ=90°,

∵∠PAO=∠BAO,

∴△APQ∽△AOB,

同理可得:△QEC∽△APQ∽△AOB得: = ,

= , = ,

∴QC= ,a=QC﹣OQ=

綜上所述,a的值是: ,


【解析】(1)根據(jù)一次函數(shù)圖象與坐標軸的交點求法,分別求出坐標即可;(2)根據(jù)相似三角形的判定得出△APQ∽△AOB,以及當⊙Q在y軸右側(cè)與y軸相切時,當⊙Q在y軸的左側(cè)與y軸相切時,分別分析得出答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長是16cm,那么四邊形ABFD的周長是( 。

A.16cm
B.18cm
C.20cm
D.21cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:4sin60°﹣|﹣2|﹣ +(﹣1)2016

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx的圖象經(jīng)過點A(2,4)與B(6,0).

(1)求a,b的值;
(2)點C是該二次函數(shù)圖象上A,B兩點之間的一動點,橫坐標為x(2<x<6),寫出四邊形OACB的面積S關(guān)于點C的橫坐標x的函數(shù)表達式,并求S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三個布袋都不透明,甲袋中裝有1個紅球和1個白球;乙袋中裝有一個紅球和2個白球;丙袋中裝有2個白球.這些球除顏色外都相同.從這3個袋中各隨機地取出1個球. ①取出的3個球恰好是2個紅球和1個白球的概率是多少?
②取出的3個球全是白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)|﹣ |﹣(﹣2011)0+4÷(﹣2)3
(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A、D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,AB=6,BD=2 ,求線段BD、BE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標中,已知點O(0,0),A(0,2),B(1,0),點P是反比例函數(shù)y=﹣ 圖象上的一個動點,過點P作PQ⊥x軸,垂足為Q.若以點O、P、Q為頂點的三角形與△OAB相似,則相應(yīng)的點P共有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各式.

(1)(﹣2)3﹣|2﹣5|﹣(﹣15)

(2)﹣4﹣(+)+(﹣5)﹣(﹣

(3)(﹣++)÷(﹣

(4)18+32÷(﹣2)3﹣(﹣4)2×5

(5)﹣32﹣[(13×(﹣)﹣6÷|﹣|]

(6)2×(﹣1)﹣2×13+(﹣1)×5+×(﹣13)

查看答案和解析>>

同步練習冊答案