【題目】正方形OABC的邊長為4,對(duì)角線相交于點(diǎn)P,拋物線L經(jīng)過O、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫出O、P、A三點(diǎn)坐標(biāo);
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

【答案】
(1)

解:以O(shè)點(diǎn)為原點(diǎn),線段OA所在的直線為x軸,線段OC所在的直線為y軸建立直角坐標(biāo)系,如圖所示.

①∵正方形OABC的邊長為4,對(duì)角線相交于點(diǎn)P,

∴點(diǎn)O的坐標(biāo)為(0,0),點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)P的坐標(biāo)為(2,2).

②設(shè)拋物線L的解析式為y=ax2+bx+c,

∵拋物線L經(jīng)過O、P、A三點(diǎn),

∴有 ,

解得: ,

∴拋物線L的解析式為y=﹣ +2x


(2)

解:∵點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn),

∴設(shè)點(diǎn)E的坐標(biāo)為(m,﹣ +2m)(0<m<4),

∴SOAE+SOCE= OAyE+ OCxE=﹣m2+4m+2m=﹣(m﹣3)2+9,

∴當(dāng)m=3時(shí),△OAE與△OCE面積之和最大,最大值為9


【解析】(1)以O(shè)點(diǎn)為原點(diǎn),線段OA所在的直線為x軸,線段OC所在的直線為y軸建立直角坐標(biāo)系.①根據(jù)正方形的邊長結(jié)合正方形的性質(zhì)即可得出點(diǎn)O、P、A三點(diǎn)的坐標(biāo);②設(shè)拋物線L的解析式為y=ax2+bx+c,結(jié)合點(diǎn)O、P、A的坐標(biāo)利用待定系數(shù)法即可求出拋物線的解析式;(2)由點(diǎn)E為正方形內(nèi)的拋物線上的動(dòng)點(diǎn),設(shè)出點(diǎn)E的坐標(biāo),結(jié)合三角形的面積公式找出SOAE+SOCE關(guān)于m的函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O在∠APB的平分線上,⊙O與PA相切于點(diǎn)C.

(1)求證:直線PB與⊙O相切;
(2)PO的延長線與⊙O交于點(diǎn)E.若⊙O的半徑為3,PC=4.求弦CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線的頂點(diǎn)為P(﹣2,2),與y軸交于點(diǎn)A(0,3),若平移該拋物線使其頂點(diǎn)移動(dòng)到點(diǎn)P1(2,﹣2),那么得到的新拋物線的一般式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.
(Ⅰ)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(Ⅱ)如圖②,若∠CAB=60°,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值 (a﹣ )( ﹣1)÷ ,其中a,b分別為關(guān)于x的一元二次方程x2 x+1=0的兩個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸的一個(gè)交點(diǎn)為A(4,0),與y軸交于點(diǎn)B.

(1)求此二次函數(shù)關(guān)系式和點(diǎn)B的坐標(biāo);
(2)在x軸的正半軸上是否存在點(diǎn)P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個(gè)布袋都不透明,甲袋中裝有1個(gè)紅球和1個(gè)白球;乙袋中裝有一個(gè)紅球和2個(gè)白球;丙袋中裝有2個(gè)白球.這些球除顏色外都相同.從這3個(gè)袋中各隨機(jī)地取出1個(gè)球. (Ⅰ)取出的3個(gè)球恰好是2個(gè)紅球和1個(gè)白球的概率是多少?
(Ⅱ)取出的3個(gè)球全是白球的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)概率的課堂上,老師提出問題:只有一張電影票,小明和小剛想通過抽取撲克牌的游戲來決定誰去看電影,請(qǐng)你設(shè)計(jì)一個(gè)對(duì)小明和小剛都公平的方案.
甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.
(1)甲同學(xué)的方案公平嗎?請(qǐng)用列表或畫樹狀圖的方法說明;
(2)乙同學(xué)將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(0,3),且當(dāng)x=1時(shí),y有最小值2.

(1)求a,b,c的值
(2)設(shè)二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)(k為實(shí)數(shù)),它的圖象的頂點(diǎn)為D.
①當(dāng)k=1時(shí),求二次函數(shù)y=k(2x+2)﹣(ax2+bx+c)的圖象與x軸的交點(diǎn)坐標(biāo);
②請(qǐng)?jiān)诙魏瘮?shù)y=ax2+bx+c與y=k(2x+2)﹣(ax2+bx+c)的圖象上各找出一個(gè)點(diǎn)M,N,不論k取何值,這兩個(gè)點(diǎn)始終關(guān)于x軸對(duì)稱,直接寫出點(diǎn)M,N的坐標(biāo)(點(diǎn)M在點(diǎn)N的上方);
③過點(diǎn)M的一次函數(shù)y=﹣x+t的圖象與二次函數(shù)y=ax2+bx+c的圖象交于另一點(diǎn)P,當(dāng)k為何值時(shí),點(diǎn)D在∠NMP的平分線上?
④當(dāng)k取﹣2,﹣1,0,1,2時(shí),通過計(jì)算,得到對(duì)應(yīng)的拋物線y=k(2x+2)﹣(ax2+bx+c)的頂點(diǎn)分別為(﹣1,﹣6,),(0,﹣5),(1,﹣2),(2,3),(3,10),請(qǐng)問:頂點(diǎn)的橫、縱坐標(biāo)是變量嗎?縱坐標(biāo)是如何隨橫坐標(biāo)的變化而變化的?

查看答案和解析>>

同步練習(xí)冊(cè)答案