正方形、正方形和正方形的位置如圖所示,點在線段

上,正方形的邊長為4,則的面積為(   )

A、10      B、12           C、14   。、16

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1:y=-x+1與兩直線l2:y=2x,l3:y=x分別相交于M、N兩點.設(shè)點P為x軸上的一點,過點P的直線l:y=-x+b與直線l2、l3分別交于A、C兩點,以線段AC為對角線作正方形ABCD.
(1)寫出正方形ABCD各頂點的坐標(biāo)(用b表示);
(2)當(dāng)點P從原點O出發(fā),沿著x軸的正方向運(yùn)動時,設(shè)正方形ABCD和△OMN重疊部分的面積為S,求S與b之間的函數(shù)關(guān)系式,并寫出自變量b的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

△ABC是頂點在如圖所示的方格紙中的格點上的三角形.
(1)在這個方格紙中,把△ABC向上平移5格,得△A1B1C1,再將△A1B1C1繞點C1按順時針方向旋轉(zhuǎn)180°得△A2B2C1,請在方格紙中畫出△A1B1C1和△A2B2C1;
(2)若以點B為坐標(biāo)原點,BC為x軸的正方向建立直角坐標(biāo)系(方格紙中一個小正方形的邊長為1個單位長),畫出這個坐標(biāo)系,寫出第一次變換后所得△A1B1C1的各頂點和第二次變換后所得△A2B2C1的各頂點的坐標(biāo);并求A點經(jīng)過2次變換后到達(dá)點A2所經(jīng)過路徑長度是多少個單位長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系xOy中,正方形PABC的邊長為1,將其沿x軸的正方向連續(xù)滾動,即先以頂點A為旋轉(zhuǎn)中心將正方形PABC順時針旋轉(zhuǎn)90°得到第二個正方形,再以頂點D為旋轉(zhuǎn)中心將第二個正方形順時針旋轉(zhuǎn)90°得到第三個正方形,依此方法繼續(xù)滾動下去得到第四個正方形,…,第n個正方形.設(shè)滾動過程中的點P的坐標(biāo)為(x,y).

(1)畫出第三個和第四個正方形的位置,并直接寫出第三個正方形中的點P的坐標(biāo);
(2)畫出點P(x,y)運(yùn)動的曲線(0≤x≤4),并直接寫出該曲線與x軸所圍成區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題學(xué)習(xí):
(1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點,則四邊形EFGH是
正方
正方
形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2

(2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點,則四邊形EFGH是
形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
S1=2S2
S1=2S2
;
(3)如圖3,梯形ABCD中,AD∥BC,對角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點.四邊形EFGH是
形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關(guān)系為:
S1=2S2
S1=2S2
;
(4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點,H、F分別是邊形AD、BC上的點,且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖,可用一個正方形制作成一副“七巧板”,利用“七巧板”能拼出各種各樣的圖案,根據(jù)“七巧板”的制作過程,請你解答下列問題.
(1)“七巧板”的七個圖形,可以歸納為三種不同形狀的平面圖形,即一塊正方形,一塊 _________ 和五塊 _________
(2)請按要求將七巧板的七塊圖形重新拼接(不重疊,并且圖形中間不留縫隙),在下面空白處畫出示意圖.①拼成一個等腰直角三角形;②拼成一個長與寬不等的長方形;③拼成一個六邊形.
(3)發(fā)揮你的想象力,用七巧板拼成一個圖案,在下面空白處畫出示意圖,并在圖案旁邊寫出簡明的解說詞.

查看答案和解析>>

同步練習(xí)冊答案