【題目】如圖,在中,,點是、平分線的交點,且,,則點到邊的距離為( )
A.B.C.D.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC的三個頂點的位置如圖所示,現(xiàn)將△ABC平移,使點A變換為點A1,點B1、C1分別是B、C的對應點.
(1)請畫出平移后的△A1B1C1(不寫畫法);
(2)將△A1B1C1繞點C1順時針旋轉90°,畫出旋轉后的△A2B2C1(不寫畫法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC、BD相交于點O,AE⊥BD于E,若∠OAE=24°,則∠BAE的度數(shù)是( 。
A. 24° B. 33° C. 42° D. 43°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次促銷活動中,某商場為了吸引顧客,設立了一個可以自由轉動的轉盤(如圖,轉盤被平均分成份),并規(guī)定:顧客每購買元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉轉盤,那么可以直接獲得購物券元.
(1)求每轉動一次轉盤所獲購物券金額的平均數(shù);
(2)如果你在該商場消費元,你會選擇轉轉盤還是直接獲得購物券?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知直線l的解析式為:y=kx+x﹣k+1,若將直線l繞A點旋轉.如圖所示,當直線l旋轉到l1位置時,k=2且l1與y軸交于點B,與x軸交于點C;當直線l旋轉到l2位置時,k=﹣且l2與y軸交于點D
(1)求點A的坐標;
(2)直接寫出B、C、D三點的坐標,連接CD計算△ADC的面積;
(3)已知坐標平面內一點E,其坐標滿足條件E(a,a),當點E與點A距離最小時,直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AO=CO,那么添加下列一個條件后,仍無法判定△ABO ≌△CDO 的是( )
A.∠A=∠CB.BO=DOC.AB=CDD.∠B=∠D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC 中,AB=AC,點D 在底邊BC 上,AE=AD,連接 DE.
(1)如圖①,已知∠BAC=90°,∠BAD=60°,求 ∠CDE 的度數(shù);
(2)如圖①,已知∠BAC=90°,當點D 在線段BC(點B,C 除外)上運動時,試探究∠BAD與 ∠CDE 的數(shù)量關系;
(3)如圖②,若 ∠BAC≠90°,試探究∠BAD與 ∠CDE 的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個圓錐的側面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P從出發(fā),沿所示方向運動,每當碰到長方形OABC的邊時會進行反彈,反彈時反射角等于入射角,當點P第2018次碰到長方形的邊時,點P的坐標為______.
【答案】
【解析】
根據(jù)反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個循環(huán)組依次循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定所對應的點的坐標即可.
解:如圖所示:經過6次反彈后動點回到出發(fā)點,
,
當點P第2018次碰到矩形的邊時為第337個循環(huán)組的第2次反彈,
點P的坐標為.
故答案為:.
【點睛】
此題主要考查了點的坐標的規(guī)律,作出圖形,觀察出每6次反彈為一個循環(huán)組依次循環(huán)是解題的關鍵.
【題型】填空題
【結束】
15
【題目】為了保護環(huán)境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節(jié)省油量為萬升;B種型號每輛價格為b萬元,每年節(jié)省油量為萬升:經調查,購買一輛A型車比購買一輛B型車多20萬元,購買2輛A型車比購買3輛B型車少60萬元.
請求出a和b;
若購買這批混合動力公交車每年能節(jié)省萬升汽油,求購買這批混合動力公交車需要多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com