【題目】如圖,AD是圓O的切線,切點為A,AB是圓O的弦。過點BBC//AD,交圓O于點C,連接AC,過點CCD//AB,交AD于點D。連接AO并延長交BC于點M,交過點C的直線于點P,且BCP=ACD。

1判斷直線PC與圓O的位置關系,并說明理由:

2 AB=9,BC=6,求PC的長。

【答案】1)直線PC與圓O相切(2

【解析】解:(1)直線PC與圓O相切。理由如下::

如圖,連接CO并延長,交圓O于點N,連接BN

AB//CD,BAC=ACD。

BAC=BNC,BNC=ACD。

BCP=ACDBNC=BCP。

CN是圓O的直徑,CBN=90。

BNCBCN=90BCPBCN=90。

PCO=90,即PCOC。

C在圓O上,直線PC與圓O相切。

2AD是圓O的切線,ADOA,即OAD=90。

BC//ADOMC=180OAD=90,即OMBC。

MC=MBAB=AC。

RtAMC中,AMC=90,AC=AB=9,MC=BC=3,

由勾股定理,得。

設圓O的半徑為r,

RtOMC中,OMC=90,OM=AMAO=,MC=3OC=r,

由勾股定理,OM 2MC 2=OC 2。解得

OMCOCP中,OMC=OCPMOC=COP,∴△OMCOCP。

,即。。

1)過C點作直徑CE,連接EB,由CE為直徑得∠E+BCE=90°,由ADBC得∠ACD=BAC,而

BAC=E,∠BCP=ACD,所以∠E=BCP,于是∠BCP+BCE=90°,然后根據(jù)切線的判斷得到結論。

2)根據(jù)切線的性質(zhì)得到OAAD,而BCAD,則AMBC,根據(jù)垂徑定理有BM=CM=BC=3,根據(jù)線段垂直平分線的性質(zhì)有AC=AB=9,在RtAMC中根據(jù)勾股定理計算出AM= 。設⊙O的半徑為r,則OC=r,OM=AMr=,在RtOCM中,根據(jù)勾股定理計算出 ,從而由OMCOCP得相似比可計算出PC。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5.

1)這個云梯的底端B離墻多遠?

2)如圖(2),如果梯子的頂端下滑了8mAC的長),那么梯子的底部在水平方向右滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進,兩種商品,購買商品比購買商品多花元,并且花費元購買商品和花費元購買商品的數(shù)量相等.

1)求購買一個商品和一個商品各需要多少元?

2)若商店準備購買,兩種商品共個,并且購買,兩種商品的總費用不超過元,那么商店至多購買商品多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的角平分線與邊的垂直平分線相交于點,作,垂足分別是、.求證:

1.

2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,C、D⊙O上的點,且OC∥BD,AD分別與BC、OC相較于點E、F,則下列結論:①AD⊥BD;②∠AOC=∠AEC; ③BC平分∠ABD;④△CEF≌△BED.其中一定成立的是_____(把你認為正確結論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P的坐標為(0,4),直線yx3x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2l1交于點C(m,4).

(1)求m的值及l2的解析式;

(2)求SAOC﹣SBOC的值;

(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙中每個小正方形的邊長為1,一段圓弧經(jīng)過格點,點O為坐標原點.

(1)該圖中弧所在圓的圓心D的坐標為   ;.

(2)根據(jù)(1)中的條件填空:

①圓D的半徑=   (結果保留根號);

②點(7,0)在圓D   (填”、“內(nèi)”);

③∠ADC的度數(shù)為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線分別與軸交于兩點,過點的直線交軸負半軸于,且.

(1)求直線的函數(shù)表達式:

(2)如圖2, 軸上點右側的一動點,以為直角頂點,為一腰在第一象限內(nèi)作等腰直角三角形,連接并延長交軸于點.點運動時,點的位置是否發(fā)生變化?如果不變請求出它的坐標:如果變化,請說明理由.

(3)直線,于點,交軸于,是否存在這樣的直線,使得?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案