【題目】完成下面的證明:

已知:如圖,點D、EF分別在線段ABBCAC上,連接DEEF、DM平分∠ADEEF于點M,,求證:。

證明:(已知)

(平角定義)

∴∠2=∠BEM(____________________)

__________(_________________________)

(_____________________________)

(_____________________________)

又∵DM平分∠ADE(已知)

(角平分線定義)

(等量代換)

【答案】等量代換;BC;同位角相等,兩直線平行;兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;

【解析】

根據(jù)角平分線的性質(zhì)定義及平行線的判定和性質(zhì)即可求解.

解:證明:(已知)

(平角定義)

∴∠2=BEM(等量代換)

(同位角相等,兩直線平行)

(兩直線平行,同位角相等)

(兩直線平行,內(nèi)錯角相等)

又∵DM平分∠ADE(已知)

(角平分線定義)

(等量代換)

故答案為:等量代換;BC;同位角相等,兩直線平行;兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市規(guī)定:出租車起步價允許行駛的最遠路程為3千米,超過3千米的部分按每千米另行收費,甲說:我乘這種出租車走了11千米,付了17;乙說:我乘這種出租車走了23千米,付了35.請你算一算這種出租車的起步價是多少元?以及超過3千米后,每千米的車費是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在AB邊上E處,EQBC相交于F,若AD8 cm,AB6 cm,AE4cm,則EBF的周長是______________ cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,∠ABC3C,∠1=∠2BEAE。 求證:ACAB2BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,三角形ABC三個頂點的坐標分別為、,,若把三角形ABC向上平移3個單位長度,再向左平移1個單位長度得到三角形A′B′C′,點A、B、C的對應(yīng)點分別為A′、B′、C′。

1)寫出點A′B′、C′的坐標;

2)在圖中畫出平移后的三角形A′B′C′;

3)三角形A′B′C′的面積為_____________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是( 。

A. b B. b1b1 C. b2 D. 1b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點EF分別在矩形ABCD的邊AD、AB上,連接EF,四邊形ABFE沿EF翻折能與四邊形重合,且ED相交,若,則  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,點B的中點,且

1)若AE=25,CE=14,求△ACE的面積;

2)求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式(組),并在數(shù)軸上表示它的解集

121+x)<3;

2.

查看答案和解析>>

同步練習(xí)冊答案