【題目】四邊形ABCD是正方形.
(1)如圖(1)所示,點(diǎn)G是BC邊上任意一點(diǎn)(不與B,C兩點(diǎn)重合),連接AG,作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E.求證△ABF≌△DAE;
(2)在(1)中,線段EF與AF,BF的等量關(guān)系是____;(不需證明,直接寫出結(jié)論即可)
(3)如圖(2)所示,若點(diǎn)G是CD邊上任意一點(diǎn)(不與C,D兩點(diǎn)重合),作BF⊥AG于點(diǎn)F,DE⊥AG于點(diǎn)E,那么圖中的全等三角形是____,線段EF與AF,BF的等量關(guān)系是____.(不需證明,直接寫出結(jié)論即可)
【答案】 EF=AF-BF △ABF≌△DAE EF=BF-AF
【解析】試題分析:(1)根據(jù)正方形的性質(zhì)可知:△ABF≌△ADE;
(2)利用全等三角形的性質(zhì),AE=BF,AF=DE,得出AF-BF=EF;
(3)同理可得出圖(2),△ABF≌△DAE,EF=BF-AF.
(1) 證明:在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAF+∠DAE=90°.
在Rt△ABF中,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE.
在△ABF與△DAE中,
∠ABF=∠DAE,∠AFB=∠DEA=90°,AB=DA,
∴△ABF≌△DAE(AAS).
(2)EF=AF-BF.
證明∵△ABF≌△DAE,
∴AE=BF,
∵EF=AF-AE,
∴EF=AF-BF.
(3)△ABF≌△DAE;EF=BF-AF.
證明:在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAF+∠DAE=90°.
在Rt△ABF中,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE.
在△ABF與△DAE中
∵∠ABF=∠DAE,
∠AFB=∠DEA=90°,
AB=DA,
∴△ABF≌△DAE(AAS).
∴AE=BF,
∴EF=AE-AF=BF-AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列語句列出方程:
(1)比a小4的數(shù)是7:_____.
(2)3與x差的一半等于x的4倍______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a、b是正實(shí)數(shù),那么, 是恒成立的.
(1)由 恒成立,說明 恒成立;
(2)已知a、b、c是正實(shí)數(shù),由 恒成立,猜測(cè): 也恒成立;
(3)如圖,已知AB是直徑,點(diǎn)P是弧上異于點(diǎn)A和點(diǎn)B的一點(diǎn),PC⊥AB,垂足為C,AC=a,BC=b,由此圖說明 恒成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,邊長(zhǎng)為4的正方形ABCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)30°后能與四邊形A′B′C′D′重合.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)四邊形A′B′C′D′,是怎樣的圖形?面積是多少?
(3)求∠C′DC和∠CDA′的度數(shù);
(4)連接AA′,求∠DAA′的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y= +x+m的頂點(diǎn)在直線y=x+3上,過點(diǎn)F(﹣2,2)的直線交該拋物線于點(diǎn)M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),MA⊥x軸于點(diǎn)A,NB⊥x軸于點(diǎn)B.
(1)先通過配方求拋物線的頂點(diǎn)坐標(biāo)(坐標(biāo)可用含m的代數(shù)式表示),再求m的值;
(2)設(shè)點(diǎn)N的橫坐標(biāo)為a,試用含a的代數(shù)式表示點(diǎn)N的縱坐標(biāo),并說明NF=NB;
(3)若射線NM交x軸于點(diǎn)P,且PAPB= ,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是 的中點(diǎn),弦CE⊥AB于點(diǎn)F,過點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CF、BC于點(diǎn)P、Q,連接AC.給出下列結(jié)論: ①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心;④APAD=CQCB.
其中正確的是(寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上3條互不重合的直線交于一點(diǎn),其中對(duì)頂角有( )
A.4對(duì)B.5對(duì)C.6對(duì)D.7對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD=BC,E、F分別是DC、AB邊的中點(diǎn),FE的延長(zhǎng)線分別與AD、BC的延長(zhǎng)線交于H、G點(diǎn).求證:∠AHF=∠BGF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com