【題目】(本題8分)如圖,在等邊△ABC中,點D,E分別在邊BC,AB上,BD=AE,AD與CE交于點F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).
【答案】(1)證明見解析 (2)60°
證明:(1)在等邊△ABC中,AB=BA,∠B=∠CAE
∴在△ACE和△BAD中
∴△ACE≌△BAD(SAS)
∴AD=CE
(2)∵△ACE≌△BAD(已證)
∴∠BAD=∠ACE,
而∠DFC=∠DAC+∠ACE
∴∠DFC=∠DAC+∠BAD=∠BAC=60°
【解析】試題分析:(1)根據(jù)△ABC是等邊三角形,得到∠BAC=∠B=60°,AB=AC,再根據(jù)AE=BD可以利用SAS證得△AEC≌△BDA,從而證得AD=CE.
(2)根據(jù)△AEC≌△BDA得到∠ACE=∠BAD,然后求得∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=60°,從而求得其正弦值.
試題解析:
證明:(1)在等邊△ABC中,AB=BA,∠B=∠CAE
∴在△ACE和△BAD中
∴△ACE≌△BAD(SAS)
∴AD=CE
(2)∵△ACE≌△BAD(已證)
∴∠BAD=∠ACE,
而∠DFC=∠DAC+∠ACE
∴∠DFC=∠DAC+∠BAD=∠BAC=60°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1、x2是一元二次方程2x2-2x+m+1=0的兩個實根.
(1)求實數(shù)m的取值范圍;
(2)如果m滿足不等式7+4x1x2>x12+x22,且m為整數(shù).求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為__________.
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE.求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若∠α與∠β互為補角,則下列式子成立的是( 。
A.α﹣β=90°
B.α+β=90°
C.α﹣β=180°
D.α+β=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年勵志中學(xué)榮獲廣德縣首屆“皖新杯”漢字聽寫大賽團體第一名。今年九月某校也舉辦了首屆“做文明人,寫規(guī)范字聽寫大賽”,學(xué)生經(jīng)選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學(xué)生成績?yōu)?/span>x(分),且50≤x<100,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:(頻數(shù)指某個數(shù)據(jù)出現(xiàn)的次數(shù))
請根據(jù)表格提供的信息,解答以下問題:
(1)本次決賽共有______名學(xué)生參加;
(2)直接寫出表中a=______,b=______;
(3)請補全下面相應(yīng)的頻數(shù)分布直方圖;
(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用頻率估計概率,可以發(fā)現(xiàn),拋擲硬幣,“正面朝上”的概率為0.5,那么擲一枚質(zhì)地均勻的硬幣10次,下列說法正確的是( )
A. 每兩次必有1次正面向上 B. 可能有5次正面向上
C. 必有5次正面向上 D. 不可能有10次正面向上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com