【題目】已知,如圖, = = ,那么△ABD與△BCE相似嗎?為什么?

【答案】解:∵ = = ,

∴△ABC∽△DBE,

∴∠ABC=∠DBE,

∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,

即∠ABD=∠CBE,

= ,

= ,

∴△ABD∽△CBE


【解析】先根據(jù)三組對(duì)應(yīng)邊的比相等的兩個(gè)三角形相似判斷△ABC∽△DBE,得到∠ABC=∠DBE,則∠ABD=∠CBE,再利用比例性質(zhì)由 = 得到 = ,于是根據(jù)兩組對(duì)應(yīng)邊的比相等且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似可判斷△ABD∽△CBE.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用相似三角形的判定,掌握相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一個(gè)三棱柱包裝盒,它的底面是邊長(zhǎng)為10cm的正三角形,三個(gè)側(cè)面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個(gè)平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個(gè)三棱柱包裝盒的側(cè)面進(jìn)行包貼(要求包貼時(shí)沒(méi)有重疊部分),紙帶在側(cè)面纏繞三圈,正好將這個(gè)三棱柱包裝盒的側(cè)面全部包貼滿.

1)請(qǐng)?jiān)趫D2中,計(jì)算裁剪的角度∠BAD;

2)計(jì)算按圖3方式包貼這個(gè)三棱柱包裝盒所需的矩形紙帶的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.

(1)求證:△ADF∽△DEC
(2)若AB=4,AD=3 ,AE=3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:方程組的解x為非正數(shù),y為負(fù)數(shù).

(1)a的取值范圍;

(2)化簡(jiǎn)|a3||a2|;

(3)a的取值范圍中,當(dāng)a為何整數(shù)時(shí),不等式2axx2a1的解為x1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,,求的度數(shù). (提示:作).

2)如圖2,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),,求、之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)在(2)的條件下,如果點(diǎn)在射線上運(yùn)動(dòng),請(qǐng)你直接寫出、之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為190元、160元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

1720

第二周

4臺(tái)

10臺(tái)

2960

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)

1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

2)若超市準(zhǔn)備用不多于5100元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn).

(1)如圖①,若點(diǎn)E、F分別為ABAC上的點(diǎn),且DEDF,則BEAF的數(shù)量關(guān)系是   

(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DEDF,那么上述結(jié)論還成立嗎?請(qǐng)利用圖②說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)OEFBCAB于點(diǎn)E,交AC于點(diǎn)F,過(guò)點(diǎn)OODAC于點(diǎn)D,下列四個(gè)結(jié)論:①BE=EF-CF;②∠BOC=90°+A;③點(diǎn)O到△ABC各邊的距離相等;④設(shè)OD=m,AE+AF=n,則SAEF=mn,其中正確的結(jié)論是______(填所有正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是( )
A.方程x2-4x+2=0無(wú)實(shí)數(shù)根;
B.兩條對(duì)角線互相垂直且相等的四邊形是正方形
C.甲、乙、丙三人站成一排合影留念,則甲、乙二人相鄰的概率是
D.若 是反比例函數(shù),則k的值為2或-1。

查看答案和解析>>

同步練習(xí)冊(cè)答案