【題目】下列命題正確的是( )
A.方程x2-4x+2=0無實(shí)數(shù)根;
B.兩條對(duì)角線互相垂直且相等的四邊形是正方形
C.甲、乙、丙三人站成一排合影留念,則甲、乙二人相鄰的概率是
D.若 是反比例函數(shù),則k的值為2或-1。
【答案】C
【解析】A.∵x2-4x+2=0,
∴△=(-4)2-4×1×2=80,
∴方程有兩個(gè)不相等的實(shí)數(shù)根.
故錯(cuò)誤,A不符合題意.
B.兩條對(duì)角線互相垂直平分且相等的四邊形是正方形,故錯(cuò)誤,B不符合題意.
C.∵甲、乙、丙三人站成一排合影留念的所有可能結(jié)果有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種情況,
∴甲、乙二人相鄰的情況有4種,
∴甲、乙二人相鄰的概率為:=.
故正確,C符合題意.
D.依題可得:k2-k-3=-1且k2+k=1
∴k=2或k=-1且k=,
故k不存在,D不符合題意.
所以答案是:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用求根公式和反比例函數(shù)的概念的相關(guān)知識(shí)可以得到問題的答案,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根;形如y=k/x(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).自變量x的取值范圍是x不等于0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在超市幫媽媽買回一袋紙杯,他把紙杯整齊地疊放在一起,如圖請(qǐng)你根據(jù)圖中的信息,若小明把100個(gè)紙杯整齊疊放在一起時(shí),它的高度約是( 。
A.106cmB.110cmC.114cmD.116cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC= , BC=2,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E。
(1)求證:E是BC的中點(diǎn);
(2)連結(jié)DE,求證:△CDE∽△CBA;
(3)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在ABCD中,BF平分∠ABC交AD于點(diǎn)F,AE⊥BF于點(diǎn)O,交BC于點(diǎn)E,連接EF.
(1)求證:四邊形ABEF是菱形:
(2)若菱形ABEF的周長(zhǎng)為16,∠BEF=120°,求AE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.已知某開發(fā)區(qū)有一塊四邊形空地ABCD,現(xiàn)計(jì)劃在該空地上種植草皮,經(jīng)測(cè)量∠ADC=90°,AD=6m,CD=8m,BC=AB=13m,若每平方米草皮需200元,則在該空地上種植草皮共需多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的位置如圖(每個(gè)小正方形的邊長(zhǎng)均為1):
(1)請(qǐng)畫出△ABC沿軸向右平移3個(gè)單位長(zhǎng)度,再沿軸向上平移2個(gè)單位長(zhǎng)度后的(其中分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫畫法);
(2)直接寫出三點(diǎn)的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過點(diǎn)F作FG∥CD,交AE于點(diǎn)G,連接DG.
(1)求證:四邊形DEFG為菱形;
(2)若CD=8,CF=4,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com