【題目】已知拋物線y=x2+kx+2k﹣4
(1)當(dāng)k=2時(shí),求出此拋物線的頂點(diǎn)坐標(biāo);
(2)求證:無論k為任何實(shí)數(shù),拋物線都與x軸有交點(diǎn),且經(jīng)過x軸一定點(diǎn);
(3)已知拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn)(A在B的左邊),|x1|<|x2|,與y軸交于C點(diǎn),且S△ABC=15.問:過A,B,C三點(diǎn)的圓與該拋物線是否有第四個(gè)交點(diǎn)?試說明理由.如果有,求出其坐標(biāo).
【答案】(1)頂點(diǎn)坐標(biāo)為(﹣1,﹣1).(2)證明見解析;(3)(1,﹣6).
【解析】解:(1)當(dāng)=2時(shí),拋物線為=+,…………………………1分
配方: =+=++1-1
得=-1,
∴頂點(diǎn)坐標(biāo)為(-1,-1);………………………………………………3分
(也可由頂點(diǎn)公式求得)
(2)令=0,有++-4=0,………………………………4分
此一元二次方程根的判別式
⊿=-4·(-4)=-+16=,…………………5分
∵無論為什么實(shí)數(shù), ≥0,
方程++-4=0都有解,…………………………………………6分
即拋物線總與軸有交點(diǎn).
由求根公式得=,………………………………………………7分
當(dāng)≥4時(shí), =,
1==-2, 2==-+2;
當(dāng)<4時(shí), =,
1==-+2, 2==-2.
即拋物線與軸的交點(diǎn)分別為(-2,0)和(-+2,0),
而點(diǎn)(-2,0)是軸上的定點(diǎn);…………………………………………8分
(3)過A,B,C三點(diǎn)的圓與該拋物線有第四個(gè)交點(diǎn).…………………9分
設(shè)此點(diǎn)為D.∵| 1|<| 2|,C點(diǎn)在y軸上,
由拋物線的對稱,可知點(diǎn)C不是拋物線的頂點(diǎn).……………………………10分
由于圓和拋物線都是軸對稱圖形,
過A、B、C三點(diǎn)的圓與拋物線組成一個(gè)軸對稱圖形.……………………11分
∵軸上的兩點(diǎn)A、B關(guān)于拋物線對稱軸對稱,
∴過A、B、C三點(diǎn)的圓與拋物線的第四個(gè)
交點(diǎn)D應(yīng)與C點(diǎn)關(guān)于拋物線對稱軸對稱.……………………………………12分
由拋物線與軸的交點(diǎn)分別為(-2,0)和(-+2,0):
當(dāng)-2<-+2,即<4時(shí),…………………………13分
A點(diǎn)坐標(biāo)為(-2,0),B為(-+2,0).
即1=-2, 2=-+2.
由| 1|<| 2|得-+2>2,解得<0.
根據(jù)S△ABC=15,得AB·OC=15.
AB=-+2-(-2)=4-,
OC=|2-4|=4-2,
∴(4-)(4-2)=15,
化簡整理得=0,
解得=7(舍去)或=-1.
此時(shí)拋物線解析式為=,
其對稱軸為=,C點(diǎn)坐標(biāo)為(0,-6),
它關(guān)于=的對稱點(diǎn)D坐標(biāo)為(1,-6);………………………………14分
當(dāng)-2>-+2,由A點(diǎn)在B點(diǎn)左邊,
知A點(diǎn)坐標(biāo)為(-+2,0),B為(-2,0).
即1=-+2, 2=-2.
但此時(shí)| 1|>| 2|,這與已知條件| 1|<| 2|不相符,
∴不存在此種情況.
故第四個(gè)交點(diǎn)的坐標(biāo)為(1,-6).
(如圖6)
(1)把=2代入拋物線,通過配方可求得此拋物線的頂點(diǎn)坐標(biāo)
(2)令y=0,解方程++-4,即可求出拋物線與x軸兩交點(diǎn)的橫坐標(biāo),定點(diǎn)為與k值無關(guān)的點(diǎn);
(3)過A、B、C三點(diǎn)的圓與拋物線有第四個(gè)交點(diǎn)D,根據(jù)A、B、C三點(diǎn)坐標(biāo),討論k的范圍,表示△ABC的面積,列方程求k,再根據(jù)對稱性求D點(diǎn)坐標(biāo)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳今年4月份某星期的最高氣溫如下(單位℃):26,25,27,28,27,25,25,則這個(gè)星期的最高氣溫的眾數(shù)和中位數(shù)分別是( )
A.25,26
B.25,26.5
C.27,26
D.25,28
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小樂用一塊長方形硬紙板在陽光下做投影實(shí)驗(yàn),通過觀察,發(fā)現(xiàn)這塊長方形硬紙板在平整的地面上不可能出現(xiàn)的投影是( 。
A.三角形
B.線段
C.矩形
D.平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三地的海拔高度分別為20m、﹣15m和﹣10m,那么最高的地方比最低的地方高( 。
A.5m
B.10m
C.25m
D.35m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)角的余角的3倍比這個(gè)角的補(bǔ)角大18°,則這個(gè)角的度數(shù)為( )
A. 36°B. 18°C. 54°D. 27°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材母題 點(diǎn)P(x,y)在第一象限,且x+y=8,點(diǎn)A的坐標(biāo)為(6,0).設(shè)△OPA的面積為S.
(1)用含有x的式子表示S,寫出x的取值范圍,畫出函數(shù)S的圖象;
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為5時(shí),△OPA的面積為多少?
(3)△OPA的面積能大于24嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的一元二次方程:(m﹣1)x2+(m﹣2)x﹣1=0(m為實(shí)數(shù)).
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;
(2)若是此方程的實(shí)數(shù)根,拋物線y=(m﹣1)x2+(m﹣2)x﹣1與x軸交于A、B,拋物線的頂點(diǎn)為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船以30海里/小時(shí)的速度由西向東航行,途中接到臺風(fēng)警報(bào),臺風(fēng)中心正以60海里/小時(shí)的速度由南向北移動(dòng),距臺風(fēng)中心20海里的圓形區(qū)域(包括邊界)都屬于臺風(fēng)區(qū),當(dāng)輪船到A處時(shí),測得臺風(fēng)中心移到位于點(diǎn)A正南方向的B處,且AB=40海里.
(1)若輪船以原方向、原速度繼續(xù)航行:
①船長發(fā)現(xiàn),當(dāng)臺風(fēng)中心到達(dá)A處時(shí),輪船肯定受影響,為什么?
②求輪船從A點(diǎn)出發(fā)到最初遇到臺風(fēng)的時(shí)間;
(2)若輪船在A處迅速改變航線,向北偏東60°的方向的避風(fēng)港以30海里/小時(shí)的速度駛?cè),輪船還會不會受到影響?若會,試求輪船最初遇到臺風(fēng)的時(shí)間;若不會,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分分)
如圖,在中, , , ,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至, 點(diǎn)的坐標(biāo)為.
()求點(diǎn)的坐標(biāo).
()求過, , 三點(diǎn)的拋物線的解析式.
()在()中的拋物線上是否存在點(diǎn),使以, , 為頂點(diǎn)的三角形是等腰直角三角形?若
存在,求出所有點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com