【題目】如圖,拋物線與x軸的交點(diǎn)分別為A、B,與y軸的負(fù)半軸交于點(diǎn)C.已知拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4),點(diǎn)B的坐標(biāo)(3,0).
(1)求該拋物線的解析式.
(2)在該函數(shù)圖象上能否找到一點(diǎn)P,使PO=PC?若能,請求出點(diǎn)P的坐標(biāo);若不能,請說明理由.
【答案】(1) y=x2﹣2x﹣3;(2) 存在,P點(diǎn)坐標(biāo)為(1+,﹣)或(1﹣,﹣).
【解析】
(1)可設(shè)出拋物線的頂點(diǎn)式,再利用B點(diǎn)坐標(biāo)可求得拋物線解析式;
(2)由PO=PC可知點(diǎn)P在線段OC的垂直平分線上,則可知P點(diǎn)的縱坐標(biāo),代入拋物線解析式則可求得P點(diǎn)坐標(biāo).
(1)∵拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4),∴可設(shè)拋物線解析式為y=a(x﹣1)2﹣4.
∵拋物線過點(diǎn)B(3,0),∴0=a(3﹣1)2﹣4,解得:a=1,∴拋物線解析式為y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;
(2)存在.
∵PO=PC,∴點(diǎn)P在線段OC的垂直平分線上,在y=x2﹣2x﹣3中,令x=0可得:y=﹣3,∴C(0,﹣3),∴P點(diǎn)縱坐標(biāo)為﹣,在y=x2﹣2x﹣3中,令y=﹣可得:x2﹣2x﹣3=﹣,解得:x=1±,∴P點(diǎn)坐標(biāo)為(1+,﹣)或(1﹣,﹣).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,經(jīng)過點(diǎn)C的⊙O與斜邊AB相切于點(diǎn)P.
(1)如圖①,當(dāng)點(diǎn)O在AC上時,試說明2∠ACP=∠B;
(2)如圖②,AC=8,BC=6,當(dāng)點(diǎn)O在△ABC外部時,求CP長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,為中點(diǎn),,給出四個結(jié)論:①;②;③;④,其中成立的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某城市為創(chuàng)建國家衛(wèi)生城市,需要購買甲、乙兩種類型的分類垃圾桶(如圖所示),據(jù)調(diào)查該城市的A、B、C三個社區(qū)積極響應(yīng)號并購買,具體購買的數(shù)和總價如表所示.
社區(qū) | 甲型垃圾桶 | 乙型垃圾桶 | 總價 |
A | 10 | 8 | 3320 |
B | 5 | 9 | 2860 |
C | a | b | 2820 |
(1)運(yùn)用本學(xué)期所學(xué)知識,列二元一次方程組求甲型垃圾桶、乙型垃圾桶的單價每套分別是多少元?
(2)按要求各個社區(qū)兩種類型的垃圾桶都要有,則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=﹣x+b交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B.
(1)求直線AB的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)直線l垂直平分OB交AB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線l上一動點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為n.
①用含n的代數(shù)式表示△ABP的面積;
②當(dāng)S△ABP=8時,求點(diǎn)P的坐標(biāo);
③在②的條件下,以PB為斜邊在第一象限作等腰直角△PBC,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),的頂點(diǎn)的坐標(biāo)為,頂點(diǎn)在軸上(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)在上,連接,且.
(1)如圖1,求點(diǎn)的縱坐標(biāo);
(2)如圖2,點(diǎn)在軸上(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)在上,連接交于點(diǎn);若,求證:
(3)如圖3,在(2)的條件下,是的角平分線,點(diǎn)與點(diǎn)關(guān)于軸對稱,過點(diǎn)作分別交于點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,點(diǎn)在軸的正半軸上.且,,的長分別是二元一次方程組的解().
(1)求點(diǎn)和點(diǎn)的坐標(biāo);
(2)點(diǎn)是線段上的一個動點(diǎn)(點(diǎn)不與點(diǎn),重合),過點(diǎn)的直線與軸平行,直線交邊或邊于點(diǎn),交邊或邊于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,線段的長度為.已知時,直線恰好過點(diǎn).
①當(dāng)時,求關(guān)于的函數(shù)關(guān)系式;
②當(dāng)時,求點(diǎn)的橫坐標(biāo)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長線交于點(diǎn)F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com