.已知:在平面直角坐標(biāo)系中,拋物線)交軸于AB兩點(diǎn),交軸于點(diǎn)C,且對(duì)稱軸為直線

(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)若點(diǎn)P(0,t)是軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究:

探究一:如圖1,設(shè)△PAD的面積為S,令Wt?S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒(méi)有,說(shuō)明理由;

探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與Rt△AOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

(參考資料:拋物線對(duì)稱軸是直線

 


解:(1)∵拋物線)的對(duì)稱軸為直線

,∴,

(2)探究一:當(dāng)時(shí),有最大值.

∵拋物線軸于兩點(diǎn),交軸于點(diǎn)

,,

當(dāng)時(shí),作軸于,

       

       

       

∴當(dāng)時(shí),有最大值,

探究二:

 


存在.分三種情況:

①當(dāng)時(shí),作軸于,則,

,

軸,軸,

,∴

,

此時(shí),又因?yàn)?sub>,

,∴,∴

∴當(dāng)時(shí),存在點(diǎn),使,

此時(shí)點(diǎn)的坐標(biāo)為(0,2).

②當(dāng)時(shí),則

 


,∴

,∴

不相似,此時(shí)點(diǎn)不存在.

③當(dāng)時(shí),以為直徑作,則的半徑,

圓心軸的距離.∵,∴軸相離.

不存在點(diǎn),使

∴綜上所述,只存在一點(diǎn)使相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐系中,已知O為原點(diǎn),在長(zhǎng)方形ABCD中,A、B、C坐標(biāo)分別是A(-3,1),B(-3,3),C(2,3)
(1)求D坐標(biāo);
(2)將長(zhǎng)方形以每秒1個(gè)單位長(zhǎng)度的速度水平向右平移2秒后得四邊形A1B1C1D1的頂點(diǎn)坐標(biāo)是多少?請(qǐng)將(1),(2)答案填下表;
(3)平移(2)中長(zhǎng)方形ABCD,幾秒鐘后△OBD面積為長(zhǎng)方形ABCD的面積的
3
2
?
點(diǎn)   D A1   B1  C1  D1
 坐標(biāo)          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實(shí)根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時(shí)方程的兩個(gè)根;
(3)若A、B是平面直角坐標(biāo)系中x軸上的兩個(gè)點(diǎn),點(diǎn)B在點(diǎn)A的左側(cè),且點(diǎn)A、B的橫坐l標(biāo)分別是(2)中方程的兩個(gè)根,以線段AB為直徑在x軸的上方作半圓P,設(shè)直線的解析l式為y=x+b,若直線與半圓P只有兩個(gè)交點(diǎn)時(shí),求出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:044

在平面直角坐標(biāo)系xoy中,已知點(diǎn)p的坐標(biāo)是(8,0),⊙P的半徑為6.

(1)k為何值時(shí),直線y=kx(k≠0)與⊙P相切?

(2)當(dāng)k=1時(shí),直線y=kx與⊙P的位置關(guān)系如何?若有交點(diǎn),求坐交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,

與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐

標(biāo)為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫(xiě)出時(shí)x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐系中,已知O為原點(diǎn),在長(zhǎng)方形ABCD中,A、B、C坐標(biāo)分別是A(-3,1),B(-3,3),C(2,3)
(1)求D坐標(biāo);
(2)將長(zhǎng)方形以每秒1個(gè)單位長(zhǎng)度的速度水平向右平移2秒后得四邊形A1B1C1D1的頂點(diǎn)坐標(biāo)是多少?請(qǐng)將(1),(2)答案填下表;
(3)平移(2)中長(zhǎng)方形ABCD,幾秒鐘后△OBD面積為長(zhǎng)方形ABCD的面積的數(shù)學(xué)公式?
點(diǎn) DA1 B1 C1 D1
坐標(biāo)

查看答案和解析>>

同步練習(xí)冊(cè)答案