精英家教網 > 初中數學 > 題目詳情
如圖所示,已知:點A(0,0),B(,0),C(0,1)在△ABC內依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…,則第n個等邊三角形的邊長等于   
【答案】分析:根據題目已知條件可推出,AA1=OC=,B1A2=A1B1=,依此類推,第n個等邊三角形的邊長等于
解答:解:∵OB=,OC=1,
∴BC=2,
∴∠OBC=30°,∠OCB=60°.
而△AA1B1為等邊三角形,∠A1AB1=60°,
∴∠COA1=30°,則∠CA1O=90°.
在Rt△CAA1中,AA1=OC=
同理得:B1A2=A1B1=,
依此類推,第n個等邊三角形的邊長等于
點評:本題主要考查等邊三角形的性質及解直角三角形,從而歸納出邊長的規(guī)律.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知:點A(0,0),B(
3
,0)
,C(0,1).在△ABC內依次作等邊三角形,使一邊在x軸上,另一個頂點在BC邊上,作出的等邊三角形分別是第1個△AA1B1,第2個△B1A2B2,第3個△B2A3B3,…,則第n個等邊三角形的邊長等于( 。
A、
3
2n
B、
3
2n-1
C、
1
2n
D、
3
2n+1

查看答案和解析>>

科目:初中數學 來源: 題型:

27、如圖所示,已知:點D在△ABC的邊AB上,連接CD,∠1=∠B,AD=4,AC=5,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知A點的坐標為(6,0),B是y軸正半軸上的一動點,直線AB交直線y=
1
2
x
于點C,矩形ADEF的頂點D、E分別在直線y=
1
2
x
和直線AB上,頂點F在x軸上.
(1)若點B的坐標為(0,4).
①求直線AB所表示的函數關系式;
②求△OAC的面積;
③求矩形ADEF的邊DE與AD的長;
(2)若矩形ADEF是正方形,求B點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•梧州)海上有一小島,為了測量小島兩端A、B的距離,測量人員設計了一種測量方法,如圖所示,已知B點是CD的中點,E是BA延長線上的一點,測得AE=8.3海里,DE=30海里,且DE⊥EC,cos∠D=
35

(1)求小島兩端A、B的距離;
(2)過點C作CF⊥AB交AB的延長線于點F,求sin∠BCF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知A點的坐標為(0,3),⊙A的半徑為1,點B在x軸上.
①若點B的坐標為(4,0),⊙B的半徑為3,試判斷⊙A與⊙B的位置關系;
②能否在x軸的正半軸上確定一點B,使⊙B與y軸相切,并且與⊙A相切?請說明理由.

查看答案和解析>>

同步練習冊答案