【題目】如圖,在△ABC中,D是AB的中點(diǎn),E是CD的中點(diǎn),過點(diǎn)C作CF∥AB交AE的延長線于點(diǎn)F,連結(jié)BF.
(1)求證:四邊形BDCF是平行四邊形;
(2)當(dāng)AC=BC時(shí),判斷四邊形BDCF是哪種特殊的平行四邊形,并證明你的結(jié)論.
【答案】(1)見解析;(2)四邊形BDCF是矩形,理由見解析
【解析】
(1)證明△ADE≌△FCE,得出AD=CF,結(jié)合AB∥CF可得出結(jié)論;
(2)根據(jù)有一個(gè)角是直角的平行四邊形是矩形,利用三線合一證明CD⊥AB即可.
解:(1)證明:∵CF∥AB,
∴∠CFE=∠EAD,
∵點(diǎn)E是CD中點(diǎn),
∴CE=DE,
在△ADE和△FCE中,
,
∴△ADE≌△FCE(AAS),
∴AD=CF,
∵點(diǎn)D是AB中點(diǎn),
∴AD=BD=CF,
∵CF∥AB,
∴四邊形BDCF是平行四邊形;
(2)∵AC=BC,
∴CD⊥AB,
即∠CDB=90°,
∵四邊形BDCF是平行四邊形,
∴四邊形BDCF是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動(dòng)點(diǎn)M,N從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時(shí),以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列長度的四組線段:①1,,;②3,4,5;③6,7,8;④a2-1,a2+1,2a(a為大于1的正整數(shù)).其中能組成直角三角形的有( )
A.①②③B.①②④C.①②D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AD∥BC,AD= ,以對(duì)角線BD為直徑的⊙O與CD切于點(diǎn)D,與BC交于點(diǎn)E,∠ABD=30°,則圖中陰影部分的面積為 . (不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實(shí)國務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=-2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連結(jié)BM,MN.
(1)求證BM=MN;
(2)若∠BCN=135°,求∠BMN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在x軸上、y軸上,CB//OA,OA=8,若點(diǎn)B的坐標(biāo)為(a,b),且b=.
(1)直接寫出點(diǎn)A、B、C的坐標(biāo);
(2)若動(dòng)點(diǎn)P從原點(diǎn)O出發(fā)沿x軸以每秒2個(gè)單位長度的速度向右運(yùn)動(dòng),當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運(yùn)動(dòng),求P點(diǎn)運(yùn)動(dòng)時(shí)間;
(3)在(2)的條件下,在y軸上是否存在一點(diǎn)Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( )
①在同一平面內(nèi)不相交的兩條線段必平行
②過兩條直線外一點(diǎn),一定可做直線,使,且
③過直線外一點(diǎn)有且只有一條直線與已知直線平行
④兩直線被第三條直線所截得的同旁內(nèi)角的平分線互相垂直
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(3a-5,a+1)
(1)若點(diǎn)A在y軸上,求點(diǎn)A的坐標(biāo).
(2)若點(diǎn)A到x軸的距離與到y軸的距離相等,求點(diǎn)A的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com