【題目】下列說法正確的有(

①在同一平面內(nèi)不相交的兩條線段必平行

②過兩條直線外一點,一定可做直線,使,且

③過直線外一點有且只有一條直線與已知直線平行

④兩直線被第三條直線所截得的同旁內(nèi)角的平分線互相垂直

A. 0B. 1C. 2D. 3

【答案】B

【解析】

依據(jù)相交線的概念以及平行公理逐一進行判斷,即可得到正確結(jié)論.

解:①在同一平面內(nèi),兩條不相交的直線是平行線,兩條線段不相交,但線段所在直線可能相交,此時不平行.故①錯誤;
②過直線外一點有且只有一條直線與已知直線平行,故當ab相交時,c不可能同時與ab平行.故②錯誤;

③過直線外一點有且只有一條直線與已知直線平行,故③正確;

④兩平行直線被第三條直線所截得的同旁內(nèi)角的平分線互相垂直,故④錯誤.

故答案為:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,A,BC三點的坐標分別為(-6,7)、(-3,0)、(0,3.

1)畫出△ABC,并求△ABC的面積.

(2)在平面直角坐標系中平移△ABC,使點C經(jīng)過平移后的對應(yīng)點為C'(5,4),平移后△ABC得到△A'B'C',畫出平移后的△A'B'C',并寫出點A',B'的坐標

3P(-3m)為△ABC中一點,將點P向右平移4個單位后,再向上平移6個單位得到點Q(n,-3),則m= n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAB的中點,ECD的中點,過點CCFABAE的延長線于點F,連結(jié)BF

1)求證:四邊形BDCF是平行四邊形;

2)當AC=BC時,判斷四邊形BDCF是哪種特殊的平行四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程ax-3a+1x+2(a+1)=0有兩個不相等的實數(shù)根x1,x2,x1-x1x2+x2=1-a,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為(  )

A. B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動課時間測量位于烈山山頂?shù)难椎鄣裣窀叨,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進1620尺到達E點,在點E處測得雕像頂端A的仰角為60°,求雕像AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,天星山山腳下西端A處與東端B處相距800(1+ )米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為 米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂,使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.

(1)當∠AOB=18°時,求所作圓的半徑;(結(jié)果精確到0.01cm)
(2)保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結(jié)果精確到0.01cm)
(參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學(xué)計算器)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A0,m+4),點C5m+3,0)在x軸的正半軸上,現(xiàn)將點C向左平移4單位長度再向上平移7個單位長度得到對應(yīng)點B7m7,n).

1)求m,n的值;

2)若點P從點C出發(fā)以每秒2個單位長度/秒的速度沿CO方向移動,同時點Q從點O出發(fā)以每秒1個單位長度的速度沿OA方向移動,設(shè)移動的時間為t秒(0t7),四邊形OPBAOQB的面積分別記為S1,S2.是否存在一段時間,使S12S2?若存在,求出t的取值范圍;若不存在,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案