如圖,.是反比例函數(shù)(k>0)在第一象限圖象上的兩點,點的坐標為(2,0),若△與△均為等邊三角形.
(1)求此反比例函數(shù)的解析式;
(2)求點的坐標.
(1)反比例函數(shù)的解析式是:;(2)A2(,0).
解析試題分析:(1)由于△P1OA1為等邊三角形,作P1C⊥OA1,垂足為C,由等邊三角形的性質及勾股定理可求出點P1的坐標,根據(jù)點P1是反比例函數(shù)圖象上的一點,利用待定系數(shù)法求出此反比例函數(shù)的解析式;
(2)作P2D⊥A1A2,垂足為D.設A1D=a,由于△P2A1A2為等邊三角形,由等邊三角形的性質及勾股定理,可用含a的代數(shù)式分別表示點P2的橫.縱坐標,再代入反比例函數(shù)的解析式中,求出a的值,進而得出A2點的坐標..
試題解析:(1)作P1B⊥OA1于點B ,
∵等邊△P1OA1中,OA1=2,
∴OB=1,P1B=,
把P1點坐標(1,)代入,
解得:,
∴反比例函數(shù)的解析式是:;
(2)作P2C⊥A1A2于點C,
∵等邊△P2A1A2,設A1C= 則P2C=,OC=2+,
把P2點坐標(2+,)代入,
解得,,
OA2=2+2= ,
∴A2(,0).
考點:反比例函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:填空題
如圖,A、B是反比例函數(shù)的圖象上的兩點.AC、BD 都垂直于x軸,垂足分別為C、D,AB的延長線交x軸于點E.若C、D的坐標分別為(1,0)、(4,0),則ΔBDE的面積 與ΔACE的面積的比值是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
反比例函數(shù)y=的圖象經(jīng)過點A(4,-2),
(1)求這個函數(shù)的解析式;
(2)請判斷點B(1,8)是否在這個反比例函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,反比例函數(shù)y=(k≠0)的圖象過等邊三角形AOB的頂點A,已知點B(﹣2,0)
(1)求反比例函數(shù)的表達式;
(2)若要使點B在上述反比例函數(shù)的圖象上,需將△ABC向上平移多少個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,P1是反比例函數(shù)在第一象限圖象上的一點,已知△P1O A1為等邊三角形,點A1的坐標為(2,0).
(1)直接寫出點P1的坐標;
(2)求此反比例函數(shù)的解析式;
(3)若△P2A1A2為等邊三角形,求點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知圖中的曲線是函數(shù) (m為常數(shù))圖象的一支.
(1)求常數(shù)m的取值范圍;
(2)若該函數(shù)的圖象與正比例函數(shù)圖象在第一象限的交點為A(2,n),求點A的坐標及反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚內(nèi)溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時間有多少小時?
(2)求k的值;
(3)當x=16時,大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,直線AB過點A(m,0),B(0,n)(其中m>0,n>0).反比例函數(shù)的圖象與直線AB交于C,D兩點,連接OC,OD.
(1)已知m+n=10,△AOB的面積為S,問:當n為何值時,S取最大值?并求這個最大值;
(2)若m=8,n=6,當△AOC,△COD,△DOB的面積都相等時,求p的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
(2013年四川資陽9分)如圖,已知直線l分別與x軸、y軸交于A,B兩點,與雙曲線(a≠0,x>0)分別交于D、E兩點.
(1)若點D的坐標為(4,1),點E的坐標為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個單位,當m為何值時,直線l與雙曲線有且只有一個交點?
(2)假設點A的坐標為(a,0),點B的坐標為(0,b),點D為線段AB的n等分點,請直接寫出b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com