【題目】我國宋朝數(shù)學家楊輝在他的著作《詳解九章算法》中提出楊輝三角(如圖),此圖揭示了(a+bnn為非負整數(shù))展開式的項數(shù)及各項系數(shù)的有關(guān)規(guī)律.

例如:

a+b01

a+b1a+b

a+b2a2+2ab+b2

a+b3a3+3a2b+3ab2+b3

a+b4a4+4a3b+6a2b2+4ab3+b4

請你猜想(a+b9的展開式中所有系數(shù)的和是(  )

A.2018B.512C.128D.64

【答案】B

【解析】

本題通過閱讀理解尋找規(guī)律,觀察已知給出的各式中的所有系數(shù)的和可得:(a+bnn為非負整數(shù))展開式的各項系數(shù)和是2n,問題即得解決.

解:(a+b0的展開式的各項系數(shù)和為:1=20;

a+b1的展開式的各項系數(shù)和為:1+1=2=21;

a+b2的展開式的各項系數(shù)和為:1+2+1=4=22;

a+b3的展開式的各項系數(shù)和為:1+3+3+1=8=23;

a+b4的展開式的各項系數(shù)和為:1+4+6+4+1=16=24;

……

∴(a+bnn為非負整數(shù))的展開式的各項系數(shù)和為:2n

∴(a+b9的展開式中所有系數(shù)的和是:29512.

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠BAD=∠CAD,則下列條件中不一定能使ABD≌△ACD的是(  )

A.B=∠CB.BDA=∠CDAC.ABACD.BDCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,面積為4的正方形OABC的頂點O與坐標原點重合,邊OA、OC分別在x軸、y軸的正半軸上,點B、P都在函數(shù)y=(x>0)的圖象上,過動點P分別作軸x、y軸的平行線,交y軸、x軸于點D、E.設(shè)矩形PDOE與正方形OABC重疊部分圖形的面積為S,點P的橫坐標為m.

(1)求k的值;

(2)用含m的代數(shù)式表示CD的長;

(3)求Sm之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題6分在一次消防演習中,消防員架起一架25米長的云梯AB,如圖斜靠在一面墻上,梯子底端B離墻角C的距離為7米

1求這個梯子的頂端距地面的高度AC是多少?

2如果消防員接到命令,按要求將梯子底部在水平方向滑 動后停在DE的位置上云梯長度不變,測得BD長為8米,那么云梯的頂部在下滑了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,點D,E分別在邊AB,AC上,將∠A沿著DE所在直線折疊,AA重合,若∠1+2140°,則∠A的度數(shù)是( 。

A.70°B.75°C.80°D.85°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線l1y=kx+b與直線l2y=bx+k在同一坐標系中的大致位置是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E BC 的中點,DE 平分∠ADC

(1)如圖 1,若∠B=∠C=90°,求證:AE 平分∠DAB;

(2)如圖 2,若 DEAE,求證:ADAB+CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩塊斜邊長相等的等腰直角三角板按如圖①擺放,斜邊AB分別交CD,CE于M,N點.

(1)如果把圖①中的△BCN繞點C逆時針旋轉(zhuǎn)90°得到△ACF連接FM,如圖②,求證:△CMF≌△CMN;

(2)將△CED繞點C旋轉(zhuǎn),則:

當點M,N在AB上(不與點A,B重合)時,線段AM,MN,NB之間有一個不變的關(guān)系式,請你寫出這個關(guān)系式,并說明理由;

當點M在AB上,點N在AB的延長線上(如圖③)時,①中的關(guān)系式是否仍然成立?

查看答案和解析>>

同步練習冊答案