直線L1與直線L2相交,其夾角為45°,直線外有一點(diǎn)P,先以L1為對(duì)稱軸作P點(diǎn)的對(duì)應(yīng)點(diǎn)P1,再以L2為對(duì)稱軸作P1點(diǎn)的對(duì)應(yīng)點(diǎn)P2,然后以L1為對(duì)稱軸作P2的對(duì)應(yīng)點(diǎn)P3,依此類推,那么究竟至少______次后Pn與P點(diǎn)重合.

精英家教網(wǎng)
如圖所示,設(shè)兩直線交點(diǎn)為O,
根據(jù)對(duì)稱性可得:作出的一系列點(diǎn)P1,P2,P3,…,Pn都在以O(shè)為圓心,OP為半徑的圓上;
且每?jī)牲c(diǎn)間的弧所對(duì)的圓心角的度數(shù)是45°;
故若Pn與P重合,
則n的最小值是360°÷45°=8.
故答案為:8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l1經(jīng)過點(diǎn)A(-2,0)和點(diǎn)B(0,
2
3
3
),直線l2的函數(shù)表達(dá)式為y=-
3
3
x+
4
3
3
,l1與l2相交于點(diǎn)P.⊙C是一個(gè)動(dòng)圓,圓心C在直線l1上運(yùn)動(dòng),設(shè)圓心C的橫坐標(biāo)是a.過點(diǎn)C作CM⊥x軸,垂足是點(diǎn)M.
(1)填空:直線l1的函數(shù)表達(dá)式是
 
,交點(diǎn)P的坐標(biāo)是
 
,∠FPB的度數(shù)是
 
°;
(2)當(dāng)⊙C和直線l2相切時(shí),請(qǐng)證明點(diǎn)P到直線的距離CM等于⊙C的半徑R,并寫出R=3
2
-2時(shí)a的值;
(3)當(dāng)⊙C和直線l2不相離時(shí),已知⊙C的半徑R=3
2
-2,記四邊形NMOB的面積為S(其中點(diǎn)N精英家教網(wǎng)是直線CM與l2的交點(diǎn)).S是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•茂名)如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2
3
,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2數(shù)學(xué)公式,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣東省湛江市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:填空題

如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年廣東省茂名市中考數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=   

查看答案和解析>>

同步練習(xí)冊(cè)答案