精英家教網 > 初中數學 > 題目詳情
(2012•翔安區(qū)質檢)定義[p,q]為一次函數y=px+q的特征數.
(1)若特征數為[2,k-2]的一次函數是正比例函數,求k的值;
(2)若特征數為[2,0]的一次函數圖象與反比例函數y=
2x
圖象交于A、B兩點,則當x取何值時,正比例函數的值大于反比例函數的值?
分析:(1)由題中的新定義[p,q]為一次函數y=px+q的特征數,表示出特征數為[2,k-2]表示的一次函數,根據一次函數y=kx+b中b=0,列出關于k的方程,求出方程的解即可得到k的值;
(2)由特征數為[2,0]表示的一次函數與反比例函數解析式聯立組成方程組,求出方程組的解得到一次函數與反比例函數的交點坐標,由交點橫坐標與原點將x軸分為四個區(qū)間,找出正比例函數圖象在反比例函數圖象上方時x的范圍,即為正比例函數的值大于反比例函數的值時x的范圍.
解答:解:(1)根據題意得:特征數為[2,k-2]的一次函數是y=2x+k-2,
又此一次函數為正比例函數,
∴k-2=0,即k=2;
(2)特征數為[2,0]的一次函數是:y=2x,
聯立
y=2x
y=
2
x
,
解得:
x=1
y=2
x=-1
y=-2
,

根據圖象分析可得:當x>1或-1<x<0時正比例函數的值大于反比例函數的值.
點評:此題考查了反比例函數與一次函數的交點問題,利用了數形結合的思想,弄清題中的新定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•翔安區(qū)質檢)如圖.⊙O的直徑AB垂直于弦CD,垂足為E,若∠COD=90°,則∠COE=
45°
45°

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•翔安區(qū)質檢)(1)如圖1,∠AOB為已知角,請用直尺和圓規(guī)準確作出∠AOB的平分線(不寫畫法,保留作圖痕跡);
(2)化簡:
a
a2+2a+1
•(a-
1
a
)

(3)如圖2.點A,F,C,D在同一直線上,點B和點E分別直線AD的兩側,且AB=DE,∠A=∠D,AF=DC.求證:BC=EF.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•翔安區(qū)質檢)如圖.己知四邊形ABCD中,AB∥DC,AB=DC,且AB=6cm,BC=8cm,對角線AC=l0cm.
(1)求證:四邊形ABCD是矩形:
(2)若點E在對角線AC上,CE=4cm,動點P從B點出發(fā),以每秒1cm的速度沿BC運動至點C止.設點P運動了x秒,請你探索:從運動開始,經過多少時間,以點E、P、C為頂點的三角形是等腰三角形?請寫出所有可能的結果.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•翔安區(qū)質檢)如圖,已知以點A(2,-1)為頂點的拋物線經過點B(4,0).
(1)求該拋物線的解析式;
(2)設點D為拋物線對稱軸與x軸的交點,點E為拋物線上一動點,過E作直線y=-2的垂線,垂足為N.
①探索、猜想線段EN與ED之間的數量關系,并證明你的結論;
②拋物線上是否存在點E使△EDN為等邊三角形?若存在,請求出所有滿足條件的點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案