請完成下面的說明:
【小題1】如圖①所示,△ABC的外角平分線交于G,試說明∠BGC=90°-∠A. 說明:根據(jù)三角形內(nèi)角和等于180°,可知∠ABC+∠ACB=180°-∠_____. 根據(jù)平角是180°,可知∠ABE+∠ACF=180°×2=360°,所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180°+∠______.根據(jù)角平分線的意義,可知∠2+∠3=(∠EBC+∠FCB)=(180°+∠_____)=90°+∠_______.所以∠BGC=180°-(∠2+∠3)=90°-∠____
【小題2】如圖②所示,若△ABC的內(nèi)角平分線交于點I,試說明∠BIC=90°+∠A.
【小題3】用(1),(2)的結(jié)論,你能說出∠BGC和∠BIC的關(guān)系嗎?(直接寫出結(jié)論)
        

【小題1】A  A  A  A  A  A
【小題2】說明:根據(jù)三角形內(nèi)角和等于180°,
可得∠ABC+∠ACB=180°-∠A,------------5分
根據(jù)角平分線的意義,有
∠6+∠8=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,--------7分
所以∠BIC=180°-(∠6+∠8)
=180°-(90°-∠A)=90°+∠A, --------------------------10分
即∠BIC=90°+∠A.
【小題3】互補.---------2分解析:
利用三角形內(nèi)角和為180°以及平行線的性質(zhì)證明
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莒南縣一模)【典型練習(xí)】如果兩個三角形有兩條邊和其中一邊上的中線對應(yīng)相等,那么這兩個三角形全等.(無需證明)
【拓展變式】小明很順利的完成了上面的練習(xí)后,又進一步對該命題進行了發(fā)散思維,把原命題中的一些條件進行了變換,得到了如下三個不同的命題:
(1)如果兩個三角形有兩條邊和第三邊上的中線對應(yīng)相等,那么這兩個三角形全等.
(2)如果兩個三角形有兩條邊和第三邊上的高對應(yīng)相等,那么這兩個三角形全等.
(3)如果兩個三角形有兩條邊和夾角的平分線對應(yīng)相等,那么這兩個三角形全等.
【探索新知】小明對這三個命題,無法判斷其命題的真假,于是他向老師求教.數(shù)學(xué)老師對命題(1)做出了一些指導(dǎo),請你幫助小明完成下面的解答過程.
已知:如圖,AB=A′B′,AD=A′D′,AD是BC邊上的中線,A′D′是B′C′邊上的中線,求證:△ABC≌△A′B′C′,
證明:如圖,延長AD至E使AD=DE,連接BE,延長A′D′至E′使A′D′=D′E′,連接B′E′.
【合作學(xué)習(xí)】對于命題(2)、(3),你能幫助小明判斷命題的真假嗎?如果是真命題,請給完整的證明,如果是假命題,在下面的空白處做出解答.(要求:畫出圖形,說明理由.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

認真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問題.
探究如圖11-1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90°+,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線

【小題1】如圖11-2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
【小題2】如圖11-3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)
結(jié)論:                                                           .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了讓學(xué)生了解環(huán)保知識,增強環(huán)保意識,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有900名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:


【小題1】填充頻率分布表中的空格;
【小題2】補全頻率分布直方圖
【小題3】在該問題中的樣本容量是多少?(1分)
答:.                         
【小題4】全體參賽學(xué)生中,競賽成績落在哪組范圍內(nèi)的人數(shù)最多?(不要求說明理由)
答:.                       (1分)
【小題5】若成績在90分以上(不含90分)為優(yōu)秀,則該校成績優(yōu)秀的約為多少人?
答:                     .(1分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧葫蘆島第六初級中學(xué)七年級下學(xué)期期中數(shù)學(xué)試卷(帶解析) 題型:解答題

請完成下面的說明:
【小題1】如圖①所示,△ABC的外角平分線交于G,試說明∠BGC=90°-∠A. 說明:根據(jù)三角形內(nèi)角和等于180°,可知∠ABC+∠ACB=180°-∠_____. 根據(jù)平角是180°,可知∠ABE+∠ACF=180°×2=360°,所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180°+∠______.根據(jù)角平分線的意義,可知∠2+∠3=(∠EBC+∠FCB)=(180°+∠_____)=90°+∠_______.所以∠BGC=180°-(∠2+∠3)=90°-∠____
【小題2】如圖②所示,若△ABC的內(nèi)角平分線交于點I,試說明∠BIC=90°+∠A.
【小題3】用(1),(2)的結(jié)論,你能說出∠BGC和∠BIC的關(guān)系嗎?(直接寫出結(jié)論)
        

查看答案和解析>>

同步練習(xí)冊答案