【題目】如圖,在任意四邊形ABCD中,M,NP,Q分別是AB,BCCDDA上的點(diǎn),對(duì)于四邊形MNPQ的形狀,以下結(jié)論中,錯(cuò)誤的是  

A. 當(dāng)MN,P,Q是各邊中點(diǎn),四邊MNPQ一定為平行四邊形

B. 當(dāng)M,N,P,Q是各邊中點(diǎn),且時(shí),四邊形MNPQ為正方形

C. 當(dāng)MN、P,Q是各邊中點(diǎn),且時(shí),四邊形MNPQ為菱形

D. 當(dāng)M,N、P、Q是各邊中點(diǎn),且時(shí),四邊形MNPQ為矩形

【答案】B

【解析】

連接AC、BD,根據(jù)三角形中位線定理得到,,,根據(jù)平行四邊形、矩形、菱形、正方形的判定定理判斷即可.

解:連接AC、BD交于點(diǎn)O,

,NPQ是各邊中點(diǎn),

,,,

,,

四邊MNPQ一定為平行四邊形,A說(shuō)法正確,不符合題意;

時(shí),四邊形MNPQ不一定為正方形,B說(shuō)法錯(cuò)誤,符合題意;

時(shí),,

四邊形MNPQ為菱形,C說(shuō)法正確,不符合題意;

時(shí),,

四邊形MNPQ為矩形,D說(shuō)法正確,不符合題意.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O為直線BC上一定點(diǎn),點(diǎn)A在直線外一定點(diǎn).在直線BC上取點(diǎn)P,使得以O、A、P為頂點(diǎn)的三角形為等腰三角形.

(1)當(dāng)∠AOC=30°時(shí),如果我們通過(guò)分類討論、畫圖嘗試可以找到滿足條件的點(diǎn)P共有______個(gè).

(2)若在直線BC上有且只有兩個(gè)滿足條件的點(diǎn)P,則∠AOC=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為解決“最后一公里”的交通接駁問(wèn)題,某市投放了大量公租自行車使用,到2014年底,全市已有公租自行車25000輛,租賃點(diǎn)600個(gè),預(yù)計(jì)到2016年底,全市將有公租自行車50000輛,并且平均每個(gè)租賃點(diǎn)的公租自行車數(shù)量是2014年底平均每個(gè)租賃點(diǎn)的公租自行車數(shù)量的1.2倍,預(yù)計(jì)到2016年底,全市將有租賃點(diǎn)多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2﹣4x與x軸交于O,A兩點(diǎn),P為拋物線上一點(diǎn),過(guò)點(diǎn)P的直線y=x+m與對(duì)稱軸交于點(diǎn)Q.

(1)這條拋物線的對(duì)稱軸是 , 直線PQ與x軸所夾銳角的度數(shù)是
(2)若兩個(gè)三角形面積滿足SPOQ= SPAQ , 求m的值;
(3)當(dāng)點(diǎn)P在x軸下方的拋物線上時(shí),過(guò)點(diǎn)C(2,2)的直線AC與直線PQ交于點(diǎn)D,求:①PD+DQ的最大值;②PDDQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知: 2 型車和 1 型車載滿貨物一次可運(yùn)貨 10 噸; 1 型車和 2 型車載滿貨物一次可運(yùn)貨 11 根據(jù)以上信息, 解答下列問(wèn)題:

1 1 型車和 1 型車載滿貨物一次可分別運(yùn)貨多少噸?

2 某物流公司現(xiàn)有貨物若干噸要運(yùn)輸, 計(jì)劃同時(shí)租用型車 6 輛,型車 8 輛, 一次運(yùn)完, 且恰好每輛車都滿載貨物, 請(qǐng)求出該物流公司有多少噸貨物要運(yùn)輸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測(cè)角儀,在A處測(cè)得電線桿上C處的仰角為30°,已知測(cè)角儀高AB為1.5米,求拉線CE的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC=5,cos∠ABC= ,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到△A1B1C.
(1)如圖①,當(dāng)點(diǎn)B1在線段BA延長(zhǎng)線上時(shí).①求證:BB1∥CA1;②求△AB1C的面積;

(2)如圖②,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)F為線段AB上的動(dòng)點(diǎn),在△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)過(guò)程中,點(diǎn)F的對(duì)應(yīng)點(diǎn)是F1 , 求線段EF1長(zhǎng)度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB4cm,BE5cm,點(diǎn)EAD邊上的一點(diǎn),AEDE分別長(zhǎng)acmbcm,滿足(a3)2|2ab9|0.動(dòng)點(diǎn)PB點(diǎn)出發(fā),以2cm/s的速度沿B→C→D運(yùn)動(dòng),最終到達(dá)點(diǎn)D,設(shè)運(yùn)動(dòng)時(shí)間為t s

1a______cm,b______cm

2t為何值時(shí),EP把四邊形BCDE的周長(zhǎng)平分?

3)另有一點(diǎn)Q從點(diǎn)E出發(fā),按照E→D→C的路徑運(yùn)動(dòng),且速度為1cm/s,若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng).求t為何值時(shí),△BPQ的面積等于6cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為選拔參加八年級(jí)數(shù)學(xué)“拓展性課程”活動(dòng)人選,數(shù)學(xué)李老師對(duì)本班甲、乙兩名學(xué)生以前經(jīng)歷的10次測(cè)驗(yàn)成績(jī)(分)進(jìn)行了整理、分析(見圖①):

1)寫出a,b的值;

2)如要推選1名學(xué)生參加,你推薦誰(shuí)?請(qǐng)說(shuō)明你推薦的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案