【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

【答案】
(1)

解:設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),

∵A(﹣1,0),B(5,0),C(0,- )三點在拋物線上,

解得

∴拋物線的解析式為:y= x2﹣2x﹣


(2)

解:∵拋物線的解析式為:y= x2﹣2x﹣ ,

∴其對稱軸為直線x=﹣ =﹣ =2,

連接BC,如圖1所示,

∵B(5,0),C(0,﹣ ),

∴設(shè)直線BC的解析式為y=kx+b(k≠0),

,

解得

∴直線BC的解析式為y= x﹣ ,

當x=2時,y=1﹣ =﹣ ,

∴P(2,﹣


(3)

解:存在.

如圖2所示,

①當點N在x軸下方時,

∵拋物線的對稱軸為直線x=2,C(0,﹣ ),

∴N1(4,﹣ );

②當點N在x軸上方時,

如圖,過點N2作N2D⊥x軸于點D,

在△AN2D與△M2CO中,

∴△AN2D≌△M2CO(ASA),

∴N2D=OC= ,即N2點的縱坐標為

x2﹣2x﹣ = ,

解得x=2+ 或x=2﹣

∴N2(2+ , ),N3(2﹣ , ).

綜上所述,符合條件的點N的坐標為(4,﹣ ),(2+ , )或(2﹣ ).


【解析】(1)設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,- )三點代入求出a、b、c的值即可;(2)因為點A關(guān)于對稱軸對稱的點B的坐標為(5,0),連接BC交對稱軸直線于點P,求出P點坐標即可;(3)分點N在x軸下方或上方兩種情況進行討論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,∠A=80°,B和∠C的平分線相交于點O

(1)連接OA,求∠OAC的度數(shù);

(2)求:∠BOC。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在第1ABA1,B=40°,BAA1=∠BA1A,A1B上取一點C延長AA1A2,使得在第2A1CA2,A1CA2=∠A1 A2CA2C上取一點D,延長A1A2A3使得在第3A2DA3,A2DA3=∠A2 A3D;,按此做法進行下去3個三角形中以A3為頂點的內(nèi)角的度數(shù)為 ;n個三角形中以An為頂點的內(nèi)角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中 的長是cm(計算結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是四邊形ABCD外接圓上任意一點,且不與四邊形頂點重合,若AD是⊙O的直徑,AB=BC=CD.連接PA,PB,PC,若PA=a,則點A到PB和PC的距離之和AE+AF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù)y=﹣ +x﹣4,下列說法正確的是(
A.當x>0時,y隨x的增大而增大
B.當x=2時,y有最大值﹣3
C.圖象的頂點坐標為(﹣2,﹣7)
D.圖象與x軸有兩個交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明用的練習本,一般在甲、乙兩家文具店購買,已知兩家文具店的標價都是每本1元,但甲文具店的優(yōu)惠條件是一次購買10本以上,從第11本起按標價的70%賣;乙文具店的優(yōu)惠條件是全部按八五折優(yōu)惠.

(1)若小明打算買30本,到哪家店購買省錢?

(2)小明現(xiàn)有38元錢,最多可買多少本練習本?

查看答案和解析>>

同步練習冊答案