【題目】如圖,在RtABC中,∠ACB=90°,以斜邊AB上一點(diǎn)O為圓心,OB為半徑作⊙O,交AC于點(diǎn)E,交AB于點(diǎn)D,且∠BEC=BDE.

(1)求證:AC是⊙O的切線(xiàn);

(2)連接OCBE于點(diǎn)F,若,求的值.

【答案】(1)證明見(jiàn)解析;(2)

【解析】

試題(1)連接OE,證得OEAC即可確定AC是切線(xiàn);
(2)根據(jù)OEBC,分別得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形對(duì)應(yīng)邊的比相等找到中間比即可求解.

試題解析:解:(1)連接OE

OB=OE,∴∠OBE=∠OEB

∵∠ACB=90°,∴∠CBE+∠BEC=90°.

BDO的直徑,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OEBC,∴∠OEA=∠ACB=90°,即OEAC,∴ACO的切線(xiàn)

(2)∵OEBC,∴AOEABC,∴OEBC=AEAC

CEAE=2:3,∴AEAC=3:5,∴OEBC=3:5.

OEBC,∴OEFCBF,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品的進(jìn)價(jià)為每件40元,如果售價(jià)為每件50元,每個(gè)月可賣(mài)出210件;如果售價(jià)超過(guò)50元但不超過(guò)80元,每件商品的售價(jià)每上漲1元,則每個(gè)月少賣(mài)1件;如果售價(jià)超過(guò)80元后,若再漲價(jià),則每漲1元每月少賣(mài)3件.設(shè)每件商品的售價(jià)為x元,每個(gè)月的銷(xiāo)售量為y件.

(1)yx的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍;

(2)設(shè)每月的銷(xiāo)售利潤(rùn)為W,請(qǐng)直接寫(xiě)出Wx的函數(shù)關(guān)系式;

(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).

小剛同學(xué)的思路是:將BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得P′PC是等邊三角形,而PP′A又是直角三角形(由勾股定理的逆定理可證),所以APB=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊ABC的邊長(zhǎng)為,問(wèn)題得到解決.

請(qǐng)你參考小剛同學(xué)的思路,探究并解決下列問(wèn)題:

如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=2,PC=.求BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過(guò)點(diǎn)O(0,0),A(4,4),與x軸的另一交點(diǎn)為點(diǎn)B,且拋物線(xiàn)對(duì)稱(chēng)軸與線(xiàn)段OA交于點(diǎn)P.

(1)求該拋物線(xiàn)的解析式和頂點(diǎn)坐標(biāo);

(2)過(guò)點(diǎn)Px軸的平行線(xiàn)l,若點(diǎn)Q是直線(xiàn)上的動(dòng)點(diǎn),連接QB.

①若點(diǎn)O關(guān)于直線(xiàn)QB的對(duì)稱(chēng)點(diǎn)為點(diǎn)C,當(dāng)點(diǎn)C恰好在直線(xiàn)l上時(shí),求點(diǎn)Q的坐標(biāo);

②若點(diǎn)O關(guān)于直線(xiàn)QB的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,當(dāng)線(xiàn)段AD的長(zhǎng)最短時(shí),求點(diǎn)Q的坐標(biāo)(直接寫(xiě)出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)A(2,0),B(0,﹣6)兩點(diǎn),

(1)求這個(gè)二次函數(shù)的解析式;

(2)設(shè)該二次函數(shù)的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線(xiàn)ACBD相交于點(diǎn)O,正方形A1B1C1O的邊OA1AB于點(diǎn)E,OC1BC于點(diǎn)F

1)求證:(BE+BF2=2OB2;

2)如果正方形ABCD的邊長(zhǎng)為a,那么正方形A1B1C1OO點(diǎn)轉(zhuǎn)動(dòng)的過(guò)程中,與正方形ABCD重疊部分的面積始終等于     (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了進(jìn)一步豐富學(xué)生的課外閱讀,欲增購(gòu)一些課外書(shū),為此對(duì)該校一部分學(xué)生進(jìn)行了一次你最喜歡的書(shū)籍問(wèn)卷調(diào)查(每人只選一項(xiàng)).根據(jù)收集到的數(shù)據(jù),繪制成如下統(tǒng)計(jì)圖(不完整):

請(qǐng)根據(jù)圖中提供的信息,完成下列問(wèn)題:

1)在這次問(wèn)卷調(diào)查中,一共抽查了 名學(xué)生;并在圖中補(bǔ)全條形統(tǒng)計(jì)圖;

2)如果全校共有學(xué)生1600名,請(qǐng)估計(jì)該校最喜歡科普書(shū)籍的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于等腰三角形,有以下說(shuō)法:

1)有一個(gè)角為的等腰三角形一定是銳角三角形

2)等腰三角形兩邊的中線(xiàn)一定相等

3)兩個(gè)等腰三角形,若一腰以及該腰上的高對(duì)應(yīng)相等,則這兩個(gè)等腰三角形全等

4)等腰三角形兩底角的平分線(xiàn)的交點(diǎn)到三邊距離相等

其中,正確說(shuō)法的個(gè)數(shù)為(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情景:如圖1,在同一平面內(nèi),點(diǎn)和點(diǎn)分別位于一塊直角三角板的兩條直角邊,上,點(diǎn)與點(diǎn)在直線(xiàn)的同側(cè),若點(diǎn)內(nèi)部,試問(wèn)的大小是否滿(mǎn)足某種確定的數(shù)量關(guān)系?

1)特殊探究:若,則_________度,________度,_________度;

2)類(lèi)比探索:請(qǐng)猜想的關(guān)系,并說(shuō)明理由;

3)類(lèi)比延伸:改變點(diǎn)的位置,使點(diǎn)外,其它條件都不變,判斷(2)中的結(jié)論是否仍然成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)直接寫(xiě)出滿(mǎn)足的數(shù)量關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案