(2006•資陽)(1)填空:如圖1,在正方形PQRS中,已知點M、N分別在邊QR、RS上,且QM=RN,連接PN、SM相交于點O,則∠POM=______度;
(2)如圖2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此為部分條件,構(gòu)造一個與上述命題類似的正確命題并加以證明.

【答案】分析:(1)根據(jù)正方形的性質(zhì)容易得到全等條件證明△PSN≌△SRM,然后利用全等三角形的性質(zhì)就可以得到∠POM=90°.
(2)根據(jù)已知條件構(gòu)造命題要抓住它們的相同的地方,有三條鄰邊相等,并且已知一個角.命題的證明主要利用題目的已知條件證明△DCE≌△ADF,然后利用全等三角形的性質(zhì)證明結(jié)論.
解答:解:(1)90,(2分)
∵QM=RN,
∴RM=SN,
∵∠PSN=∠SRM=90°,SP=SR,
∴△PSN≌△SRM,
∴∠SPN=∠RSM,
∵∠RSM+∠MSP=90°,
∴∠POM=90°

(2)構(gòu)造的命題為:
已知等腰梯形ABCD中,AB∥CD,且BC=CD,∠ABC=60°,若點E、F分別在BC、CD上,且BE=CF,連接AF、DE相交于G,則∠AGE=120°.(4分)

證明:由已知,在等腰梯形ABCD中,AB∥CD,且BC=DA,∠ABC=60°,
∴∠ADC=∠C=120°,
∵BC=CD,BE=CF,
∴CE=DF;(5分)
在△DCE和△ADF中,
∴△DCE≌△ADF(SAS),
∴∠CDE=∠DAF,(7分)
又∠DAF+∠AFD=180°-∠ADC=60°,
∴∠CDE+∠AFD=60°,
∴∠AGE=∠DGF=180°-(∠CDE+∠AFD)=180°-60°=120°.(8分)
點評:此題是開放性試題,考查學生對正方形,梯形的性質(zhì)及全等三角形的判定的綜合運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2006•資陽)如圖,已知拋物線l1:y=x2-4的圖象與x軸相交于A、C兩點,B是拋物線l1上的動點(B不與A、C重合),拋物線l2與l1關(guān)于x軸對稱,以AC為對角線的平行四邊形ABCD的第四個頂點為D.
(1)求l2的解析式;
(2)求證:點D一定在l2上;
(3)?ABCD能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個矩形符合條件,則求此矩形的面積);如果不能為矩形,請說明理由.
注:計算結(jié)果不取近似值.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2006•資陽)已知一次函數(shù)y=x+m與反比例函數(shù)y=的圖象在第一象限的交點為P(x,2).
(1)求x及m的值;
(2)求一次函數(shù)的圖象與兩坐標軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年天津市中考數(shù)學模擬試卷(1)(解析版) 題型:解答題

(2006•資陽)如圖,已知拋物線l1:y=x2-4的圖象與x軸相交于A、C兩點,B是拋物線l1上的動點(B不與A、C重合),拋物線l2與l1關(guān)于x軸對稱,以AC為對角線的平行四邊形ABCD的第四個頂點為D.
(1)求l2的解析式;
(2)求證:點D一定在l2上;
(3)?ABCD能否為矩形?如果能為矩形,求這些矩形公共部分的面積(若只有一個矩形符合條件,則求此矩形的面積);如果不能為矩形,請說明理由.
注:計算結(jié)果不取近似值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年天津市中考數(shù)學模擬試卷(1)(解析版) 題型:解答題

(2006•資陽)已知一次函數(shù)y=x+m與反比例函數(shù)y=的圖象在第一象限的交點為P(x,2).
(1)求x及m的值;
(2)求一次函數(shù)的圖象與兩坐標軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年四川省資陽市中考數(shù)學試卷(解析版) 題型:解答題

(2006•資陽)已知一次函數(shù)y=x+m與反比例函數(shù)y=的圖象在第一象限的交點為P(x,2).
(1)求x及m的值;
(2)求一次函數(shù)的圖象與兩坐標軸的交點坐標.

查看答案和解析>>

同步練習冊答案