精英家教網 > 初中數學 > 題目詳情

【題目】如圖,等邊三角形ABC內接于半徑為1的⊙O,以BC為一邊作⊙O的內接矩形BCDE,求矩形BCDE的面積 .

【答案】

【解析】試題分析:連接BD,由等邊三角形的性質和圓周角定理得出BDC=BAC=60°,由矩形的性質和圓周角定理證出BDO的直徑,得出BD=2,CD=BD=1,由勾股定理得出BC的長,即可求出矩形BCDE的面積.

試題解析:解:連接BD,如圖所示:

ABC是等邊三角形,∴∠BAC=60°,∴∠BDC=∠BAC=60°

四邊形BCDE是矩形,∴∠BCD=90°,BDO的直徑,CBD=90°-60°=30°,

BD=2CD=BD=1,BC==矩形BCDE的面積=BCCD==

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形

1)如圖,點延長線上,,求證:點中點.

2)如圖,點中點,延長線上一點,且,求證:

3)在(2)的條件下,若的延長線與交于點,試判斷四邊形是否為平行四邊形?并證明你的結論(先補全圖形再解答).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E,點F是點E關于AB的對稱點,連接AF、BF

1)求AEBE的長;

2)若將△ABF沿著射線BD方向平移,設平移的距離為m(平移距離指點B沿BD方向所經過的線段長度).當點F分別平移到線段AB、AD上時,直接寫出相應的m的值;

3)如圖,將△ABF繞點B順時針旋轉一個角α(<α<180°),記旋轉中的△ABF△A′BF′,在旋轉過程中,設A′F′所在的直線與直線AD交于點P,與直線BD交于點Q.是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時DQ的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點EAB中點.沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F.已知EF=cm BC的長是_______________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學習小組在研究函數y=x3﹣2x的圖象與性質時,已列表、描點并畫出了圖象的一部分.

x

﹣4

﹣3.5

﹣3

﹣2

﹣1

0

1

2

3

3.5

4

y

0

(1)請補全函數圖象;

(2)方程x3﹣2x=﹣2實數根的個數為   ;

(3)觀察圖象,寫出該函數的兩條性質.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,∠B=90°,AB=AD,∠BAD的平分線交BCE,連接DE

1)說明點DABE的外接圓上;

2)若∠AED=CED,試判斷直線CDABE外接圓的位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y= ax+bxc,自變量x 與函數y 的對應值如表:

x

...

5

4

3

2

1

0

...

y

...

4

0

2

2

0

4

...

下列說法正確的是(

A. 拋物線的開口向下 B. x>-3時,yx的增大而增大

C. 二次函數的最小值是-2 D. 拋物線的對稱軸是x=-5/2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將長方形紙片的一角作折疊,使頂點 A 落在 A, DE 為折痕,將 BEA對折,使得 B落在直線 EA上,得折痕 EG .

(1) DEG 的度數;

(2) EA恰好平分 DEB ,求 DEA的度數 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,G是邊長為8的正方形ABCD的邊BC上的一點,矩形DEFG的邊EF過點A,GD=10.

(1)求FG的長;

(2)直接寫出圖中與BHG相似的所有三角形.

查看答案和解析>>

同步練習冊答案