【題目】如圖,△ABC的周長為20,其中AB=8,

(1)用直尺和圓規(guī)作 AB 的垂直平分線 DE 交 AC 于點 E,垂足為 D,連接 EB;(保留作圖痕跡,不要求寫畫法)

(2)在(1)作出 AB 的垂直平分線 DE 后,求△CBE 的周長.

【答案】(1)如圖見解析;(2)12.

【解析】

(1)利用基本作圖作AB的垂直平分線;

(2)根據(jù)垂直平分線的性質得到EA=EB,則EB+EC=AC,然后利用ABC的周長為20得到AC+BC=12,從而得到CBE的周長.

(1)如圖,BE 為所作;

(2)DE AB 的垂直平分線,

EA=EB,

EB+EC=EA+EC=AC,

∵△ABC 的周長為 20,

AC+BC=20﹣AB=20﹣8=12,

∴△CBE 的周長=BE+EC+BC=AE+EC+BC=AC+BC=12.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A’B’C’,若它移動的距離AA’等于1cm,則兩個三角形重疊部分的面積為____________cm2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,貨輪O在航行過程中,發(fā)現(xiàn)燈塔A在它南偏東60°的方向上,同時,在它北偏東30°、西北(即北偏西45°)方向上又分別發(fā)現(xiàn)了客輪B和海島C

1)請分別在圖①中畫出表示客輪B和海島C方向的射線OB,OC(不寫作法);

2)若圖中有一艘漁船D,且∠AOD的補角是它的余角的3倍,在圖②中畫出表示漁船D方向的射線OD,并求漁船D在貨輪O的方位角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個公共汽車站相向發(fā)車,一人在街上行走,他發(fā)現(xiàn)每隔8分鐘就迎面開來一輛公交車,每隔24分種從背后開來一輛公交車,如果車站發(fā)車的間隔時間相同,各車的速度相同,那兩車站發(fā)車的間隔時間為(  )

A. 18分鐘 B. 10分鐘 C. 12分鐘 D. 16分鐘

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形硬紙片ABCDEF在桌面上由圖1的起始位置沿直線l不滑行地翻滾一周后到圖2位置.若正六邊形的邊長為2cm,則正六邊形的中心O運動的路程為cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為方便市民出行,減輕城市中心交通壓力,某市正在修建貫穿全城南北、東西的地鐵1,2號線.已知修建地鐵1號線24千米和2號線22千米共需投資265億元,且1號線每千米的平均造價比2號線每千米的平均造價多0.5億元.

(1)求1號線、2號線每千米的平均造價分別是多少億元;

(2)除1,2號線外,該市規(guī)劃到2019年還要再建91.8千米的地鐵線網(wǎng).據(jù)預算,這91.8千米地鐵線網(wǎng)每千米的平均造價是1號線每千米的平均造價的1.2倍,則還需投資多少億元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1 , 0)、B(x2 , 0)(x1<x2)兩點,與y軸交于點C,x1 , x2是方程x2+4x﹣5=0的兩根.

(1)若拋物線的頂點為D,求SABC:SACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市電器銷售每臺進價分別為200元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:

銷售時段

銷售量

銷售收入

A型號

B型號

第一周

3

5

1800

第二周

4

10

3100

(1)求A、B兩種型號的電風扇的銷售價.

(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇30臺,求A種型號的電風扇最多能采購多少臺?

(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能請給出采購方案.若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線y= x2+bx+c(b,c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標為(0,﹣1),C的坐標為(4,3),直角頂點B在第四象限.

(1)如圖,若該拋物線過A,B兩點,求該拋物線的函數(shù)表達式;
(2)平移(1)中的拋物線,使頂點P在直線AC上滑動,且與AC交于另一點Q.
(i)若點M在直線AC下方,且為平移前(1)中的拋物線上的點,當以M、P、Q三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點M的坐標;
(ii)取BC的中點N,連接NP,BQ.試探究 是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案