【題目】如圖所示,ABC,∠A=90°,DBC的中點,E,F分別在AB,AC,EDF=90°,連接EF,求證:BE2+CF2=EF2.

【答案】見解析.

【解析】

過點CCGABED的延長線于點G,連接FG,易證BDE≌△CDG,可得DE=DG,BE=CG,即可求得∠FCG=90°,根據(jù)勾股定理可得CG2+CF2=FG2,根據(jù)等量代換即可解題.

如圖,過點CCGABED的延長線于點G,連接FG.

CGAB,

∴∠B=∠DCG,∠BED=∠DGC.

BD=CD,

∴△BDE≌△CDG,(AAS)

DE=DG,BE=CG.

∵∠EDF=90°,

DF垂直平分EG,

EF=FG.

∵∠A=90°,

∴∠B+∠DCF=180°-90°=90°,

∴∠DCF+∠DCG=∠FCG=90°.

Rt△CFG,CG2+CF2=FG2,

BE2+CF2=EF2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了了解江城中學學生的身高情況,隨機對該校男生、女生的身高進行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制成如下所示的統(tǒng)計表和如圖所示的統(tǒng)計圖.

組別

身高(cm)

A

x<150

B

150≤x<155

C

155≤x<160

D

160≤x<165

E

x≥165

根據(jù)圖表中提供的信息,回答下列問題:

(1)女生身高在B組的有________人;

(2)在樣本中,身高在150≤x<155之間的共有________人,身高人數(shù)最多的在________組(填組別序號);

(3)已知該校共有男生500人,女生480人,請估計身高在155≤x<165之間的學生有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)已知:如圖,△ABC中,AB=AC,ADBC邊上的中線,AE∥BC,CE⊥AE;垂足為E

1)求證:△ABD≌△CAE

2)連接DE,線段DEAB之間有怎樣的位置和數(shù)量關(guān)系?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE= AC,連接AE交OD于點F,連接CE、OE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A′B′C′ABC 經(jīng)過平移得到的,ABC 中任意一點 Px1y1)平移后的對應點為 P′x1+6,y15).

1)請寫出三角形 ABC 平移的過程;

2)分別寫出點 A′B′,C′的坐標;

3)畫出平移后的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是( )

A.a>0
B.3是方程ax2+bx+c=0的一個根
C.a+b+c=0
D.當x<1時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,D為AB的中點,E、F分別在AC、BC上,且DE⊥DF.

求證:AE2+BF2=EF2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均為銳角,點F是對角線BD上的一點,EF∥AB交AD于點E,F(xiàn)G∥BC交DC于點G,四邊形EFGP是平行四邊形,給出如下結(jié)論:
①四邊形EFGP是菱形;
②△PED為等腰三角形;
③若∠ABD=90°,則△EFP≌△GPD;
④若四邊形FPDG也是平行四邊形,則BC∥AD且∠CDA=60°.
其中正確的結(jié)論的序號是(把所有正確結(jié)論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

同步練習冊答案