【題目】如圖1,矩形ABCD中,點(diǎn)E是邊AD上動(dòng)點(diǎn),點(diǎn)F是邊BC上動(dòng)點(diǎn),連接EF,把矩形ABCD沿直線EF折疊,點(diǎn)B恰好落在邊AD上,記為點(diǎn)G;如圖2,把矩形展開鋪平,連接BE,FG.

1)判斷四邊形BEGF的形狀一定是   ,請(qǐng)證明你的結(jié)論;

2)若矩形邊AB4,BC8,直接寫出四邊形BEGF面積的最大值為   

【答案】1)四邊形BEGF是菱形,證明見解析;(2)四邊形BEGF面積的最大值為20.

【解析】

1)由折疊的性質(zhì)可得∠BFE=∠EFG,BFFG,由平行線的性質(zhì)可得∠DEF=∠GFE=∠EFB,可得EGFGBF,ADBC,可證四邊形BEGF是菱形;

2)當(dāng)EG最大時(shí),四邊形BEGF面積有最大值,由勾股定理可求EG的長(zhǎng),即可求解.

1)四邊形BEGF是菱形,

∵四邊形ABCD是矩形

ADBC,

∴∠DEF=∠EFB

∵把矩形ABCD沿直線EF折疊,點(diǎn)B恰好落在邊AD上,

∴∠BFE=∠EFGBFFG,

∴∠DEF=∠GFE,

EGFG,

EGBF,且ADBC,

∴四邊形BEGF是平行四邊形,且BFFG,

∴四邊形BEGF是菱形,

2)∵四邊形BEGF是菱形,

BEEG,

S四邊形BEGFEG×AB4EG,

∴當(dāng)EG最大時(shí),四邊形BEGF面積有最大值,

當(dāng)AE+EGAD時(shí),EG最大,

AB2+AE2BE2,

,

,

BE5EG,

∴四邊形BEGF面積的最大值=4×520.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將進(jìn)價(jià)為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價(jià)減少銷售量的辦法增加利潤(rùn),如果這種商品每件的銷售價(jià)每提高1元,其每天的銷售量就減少20.

(1)當(dāng)售價(jià)定為12元時(shí),每天可售出________件;

(2)要使每天利潤(rùn)達(dá)到640元,則每件售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,過B作一直線與CD相交于點(diǎn)E,過AAF垂直BE于點(diǎn)F,過CCG垂直BE于點(diǎn)G,在FA上截取FH=FB,再過HHP垂直AFABP.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,AB是O的直徑,OD弦BC于點(diǎn)F,交O于點(diǎn)E,連結(jié)CE、AE、CD,若AEC=ODC

(1)求證:直線CD為O的切線;

(2)若AB=5,BC=4,求線段CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明遇到這樣一個(gè)問題:如圖,矩形紙片ABCD,AB2,BC3,現(xiàn)要求將矩形紙片剪兩刀后拼成一個(gè)與之面積相等的正方形,小明嘗試給出了下面四種剪的方法,如圖①②③④,圖中BE.其中剪法正確的是( 。

A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知線段a,P為線段a上任意一點(diǎn),已知圖形M,Q為圖形M上任意一點(diǎn),當(dāng)PQ兩點(diǎn)間的距離最小時(shí),將此時(shí)PQ的長(zhǎng)度稱為圖形M與線段a的近點(diǎn)距;當(dāng)PQ兩點(diǎn)間的距離最大時(shí),將此時(shí)PQ的長(zhǎng)度稱為圖形M與線段a的遠(yuǎn)點(diǎn)距.

根據(jù)閱讀材料解決下列問題:

如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,﹣2),正方形ABCD的對(duì)稱中心為原點(diǎn)O

1)線段AB與線段CD的近點(diǎn)距是   ,遠(yuǎn)點(diǎn)距是   

2)如圖2,直線y=﹣x+6x軸,y軸分別交于點(diǎn)E,F,則線段EF和正方形ABCD的近點(diǎn)距是   ,遠(yuǎn)點(diǎn)距是   

3)直線yx+bb≠0)與x軸,y軸分別交于點(diǎn)R,S,線段RS與正方形ABCD的近距點(diǎn)是,則b的值是   ;

4)在平面直角坐標(biāo)系xOy中,有一個(gè)矩形GHMN,若此矩形至少有一個(gè)頂點(diǎn)在以O為圓心1為半徑的圓上,其余各點(diǎn)可能在圓上或圓內(nèi),將正方形ABCD繞點(diǎn)O旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,它與矩形GHMN的近點(diǎn)距的最小值是  ,遠(yuǎn)點(diǎn)距的最大值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加( 。﹎.

A. 1 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)稱為夢(mèng)之點(diǎn),例如,點(diǎn)(1,1),(﹣ 2,﹣ 2),(),…,都是夢(mèng)之點(diǎn),顯然夢(mèng)之點(diǎn)有無數(shù)個(gè).

(1)若點(diǎn) P(2,b)是反比例函數(shù) (n 為常數(shù),n ≠ 0) 的圖象上的夢(mèng)之點(diǎn),求這個(gè)反比例函數(shù)解析式;

(2)⊙O 的半徑是

①求出⊙O上的所有夢(mèng)之點(diǎn)的坐標(biāo);

②已知點(diǎn) M(m,3),點(diǎn) Q 是(1)中反比例函數(shù) 圖象上異于點(diǎn) P 的夢(mèng)之點(diǎn),過點(diǎn)Q 的直線 l y 軸交于點(diǎn) A,∠OAQ=45°.若在⊙ O 上存在一點(diǎn) N,使得直線 MN ∥ l MN ⊥ l,求出 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交,(或它們的延長(zhǎng)線)于點(diǎn),當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證(不必證明)

(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),線段,之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明。

(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),線段,之間又有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案