【題目】在平面直角坐標系中,我們不妨把橫坐標與縱坐標相等的點稱為夢之點,例如,點(1,1),(﹣ 2,﹣ 2),(,),…,都是夢之點,顯然夢之點有無數(shù)個.
(1)若點 P(2,b)是反比例函數(shù) (n 為常數(shù),n ≠ 0) 的圖象上的夢之點,求這個反比例函數(shù)解析式;
(2)⊙O 的半徑是 ,
①求出⊙O上的所有夢之點的坐標;
②已知點 M(m,3),點 Q 是(1)中反比例函數(shù) 圖象上異于點 P 的夢之點,過點Q 的直線 l 與 y 軸交于點 A,∠OAQ=45°.若在⊙ O 上存在一點 N,使得直線 MN ∥ l或 MN ⊥ l,求出 m 的取值范圍.
【答案】(1);(2)①⊙O上所有夢之點坐標是(1,1)或(-1,-1);②m的取值范圍為-5≤m≤-1或1≤m≤5.
【解析】
(1)由夢之點的定義可求得P點坐標,再利用待定系數(shù)法可求得反比例函數(shù)解析式;(2)①設(shè)⊙O上的夢之點坐標為(a,a),由圓的半徑,根據(jù)勾股定理可得到關(guān)于a的方程,可求得a的值,則可得夢之點的坐標;②分兩種情況進行討論:當MN為y=-x+b時,m=b-3,當直線MN平移至與⊙O相切時,且切點在第三象限時,b取得最小值,當直線MN平移至與⊙O相切時,且切點在第一象限時,b取得最大值,據(jù)此可得m的取值范圍為-5≤m≤-1;當直線MN為y=x+b時,同理可得,m的取值范圍為1≤m≤5.
(1) ∵P(2,b)是夢之點,∴b=2
∴P(2,2)
將P(2,2) 代入 中得n=4
∴反比例函數(shù)解析式是
(2)①設(shè)⊙O上夢之點坐標是(,)∴∴
=1或=-1
∴⊙O上所有夢之點坐標是(1,1)或(-1,-1)
②由(1)知,異于點P的夢之點Q的坐標為(-2,-2)
由已知MN∥l或MN⊥l
∴直線MN為y=-x+b或y=x+b
當MN為y=-x+b時,m=b-3
由圖可知,當直線MN平移至與⊙O相切時,
且切點在第四象限時,b取得最小值,
此時MN 記為 ,
其中 為切點,為直線與y軸的交點
∵△O 為等要直角三角形,
∴O= ∴O=2
∴b的最小值是-2,
∴m的最小值是-5
當直線MN平移至與⊙O相切時,且切點在第二象限時,
b取得最大值,此時MN 記為 ,
其中 為切點,為直線與y軸的交點。
同理可得,b的最大值為2,m的最大值為-1.
∴m的取值范圍為-5≤m≤-1.
當直線MN為y=x+b時,
同理可得,m的取值范圍為1≤m≤5,
綜上所述,m的取值范圍為-5≤m≤-1或1≤m≤5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.
(1)求甲、乙兩人每天各加工多少個這種零件?
(2)已知甲、乙兩人加工這種零件每天的加工費分別是 150 元和 120 元,現(xiàn)有 3000 個這種零件的加工任務(wù),甲單獨加工一段時間后另有安排,剩余任務(wù)由乙單獨完成.如果總加工費不超過 7800 元,那么甲至少加工了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,點E是邊AD上動點,點F是邊BC上動點,連接EF,把矩形ABCD沿直線EF折疊,點B恰好落在邊AD上,記為點G;如圖2,把矩形展開鋪平,連接BE,FG.
(1)判斷四邊形BEGF的形狀一定是 ,請證明你的結(jié)論;
(2)若矩形邊AB=4,BC=8,直接寫出四邊形BEGF面積的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點C(1,2)分別作x軸、y軸的平行線,交直線y=﹣x+6于A、B兩點,若反比例函數(shù)(x>0)的圖象與△ABC有公共點,則k的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當∠BAC+∠DAE=180° 時,我們稱△ABC與△DAE互為“頂補等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點A叫做“旋補中心”.
(1)特例感知:在圖2,圖3中,△ABC與△DAE互為“頂補等腰三角形”,AM是“頂心距”。
①如圖2,當∠BAC=90°時,AM與DE之間的數(shù)量關(guān)系為AM= DE;
②如圖3,當∠BAC=120°,ED=6時,AM的長為 。
(2)猜想論證:
在圖1中,當∠BAC為任意角時,猜想AM與DE之間的數(shù)量關(guān)系,并給予證明。
(3)拓展應(yīng)用
如圖4,在四邊形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四邊ABCD的內(nèi)部找到點P,使得△PAD與△PBC互為“頂補等腰三角形”。并回答下列問題。
①請在圖中標出點P的位置,并描述出該點的位置為 ;
②直接寫出△PBC的“頂心距”的長為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形在平面直角坐標系中的位置如圖所示,,,AC=4,把平行四邊形繞點逆時針方向旋轉(zhuǎn),使點落在軸上,則旋轉(zhuǎn)后點的對應(yīng)點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系xOy中,點A的坐標為(4,0),以點A為圓心,4為半徑的圓與x軸交于O,B兩點,OC為弦,∠AOC=60°,P是x軸上的一動點,連接CP.
(1)直接寫出OC=___________;
(2)如圖1,當CP與⊙A相切時,求PO的長;
(3)如圖2,當點P在直徑OB上時,CP的延長線與⊙A相交于點Q,問當PO為何值時,△OCQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標系中,設(shè)一次函數(shù)的圖象是直線.
(1)如果把向下平移個單位后得到直線,求的值;
(2)當直線過點和點時,且,求的取值范圍;
(3)若坐標平面內(nèi)有點,不論取何值,點均不在直線上,求所需滿足的條件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com