【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預計比去年降低200元.若該型車的銷售數量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數量不超過A型車數量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應如何組織進貨才能使這批自行車銷售獲利最多?
【答案】
(1)解:設去年A型車每輛售價x元,則今年售價每輛為(x﹣200)元,由題意,得
= ,
解得:x=2000.
經檢驗,x=2000是原方程的根.
答:去年A型車每輛售價為2000元
(2)解:設今年新進A型車a輛,則B型車(60﹣a)輛,獲利y元,由題意,得
y=(1800﹣1500)a+(2400﹣1800)(60﹣a),
y=﹣300a+36000.
∵B型車的進貨數量不超過A型車數量的兩倍,
∴60﹣a≤2a,
∴a≥20.
∵y=﹣300a+36000.
∴k=﹣300<0,
∴y隨a的增大而減。
∴a=20時,y最大=30000元.
∴B型車的數量為:60﹣20=40輛.
∴當新進A型車20輛,B型車40輛時,這批車獲利最大.
【解析】(1)設去年A型車每輛售價x元,則今年售價每輛為(x﹣200)元,由賣出的數量相同建立方程求出其解即可;(2)設今年新進A型車a輛,則B型車(60﹣a)輛,獲利y元,由條件表示出y與a之間的關系式,由a的取值范圍就可以求出y的最大值.本題考查了列分式方程解實際問題的運用,分式方程的解法的運用,一次函數的解析式的運用,解答時由銷售問題的數量關系求出一次函數的解析式是關鍵.
【考點精析】關于本題考查的分式方程的應用,需要了解列分式方程解應用題的步驟:審題、設未知數、找相等關系列方程、解方程并驗根、寫出答案(要有單位)才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,OD∥BC,交⊙O于點D,交AC于點E,連接BD,BD交AC于點F,延長AC到點P,連接PB.
(1)若PF=PB,求證:PB是⊙O的切線;
(2)如果AB=10,BC=6,求CE的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點B,E,C,F在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點A、B;點Q是以C(0,﹣1)為圓心、1為半徑的圓上一動點,過Q點的切線交線段AB于點P,則線段PQ的最小是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=﹣ [(x﹣2)2+n]與x軸交于點A(m﹣2,0)和B(2m+3,0)(點A在點B的左側),與y軸交于點C,連結BC.
(1)求m、n的值;
(2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點。
(1)寫出點O到△ABC的三個頂點A、B、C的距離的大小關系并說明理由;
(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△OMN的形狀,并證明你的結論。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學習了圖形的旋轉知識后,數學興趣小組的同學們又進一步對圖形旋轉前后的線段之間、角之間的關系進行了探究.
(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點A逆時針旋轉60°后得到△A′B′E′(A′B′與AD重合),請直接寫出∠E′AF=度,線段BE、EF、FD之間的數量關系為 .
(2)如圖3,當點E、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某藥品研究所開發(fā)一種抗菌新藥,經多年動物實驗,首次用于臨床人體試驗,測得成人服藥后血液中藥物濃度y(微克/毫升)與服藥時間x小時之間函數關系如圖所示(當4≤x≤10時,y與x成反比例).
(1)根據圖象分別求出血液中藥物濃度上升和下降階段y與x之間的函數關系式.
(2)問血液中藥物濃度不低于4微克/毫升的持續(xù)時間多少小時?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com