【題目】小華某天上午9時騎自行車離開家,17時回家,他有意描繪了離家的距離與時間的變化情況,如圖所示.
(1)圖象表示了哪兩個變量的關(guān)系?哪個是自變量?哪個是因變量?
(2)10時和11時,他分別離家多遠(yuǎn)?
(3)他最初到達(dá)離家最遠(yuǎn)的地方是什么時間?離家多遠(yuǎn)?
(4)11時到13時他行駛了多少千米?
【答案】(1)圖象表示離家距離與時間之間的關(guān)系,時間是自變量,離家距離是因變量;
(2)10時和11時,他分別離家15千米、20千米;
(3)他最初到達(dá)離家最遠(yuǎn)的地方是13時,離家30千米;
(4)11時到13時他行駛了:30﹣20=10千米.
【解析】
(1)根據(jù)函數(shù)圖象,可得自變量、因變量;
(2)根據(jù)函數(shù)圖象的縱坐標(biāo),可得答案;
(3)根據(jù)函數(shù)圖象的橫坐標(biāo)、縱坐標(biāo),可得答案;
(4)根據(jù)函數(shù)圖象的橫坐標(biāo),可得函數(shù)值,根據(jù)函數(shù)值相減,可得答案;
解:(1)圖象表示離家距離與時間之間的關(guān)系,時間是自變量,離家距離是因變量;
(2)10時和11時,他分別離家15千米、20千米;
(3)他最初到達(dá)離家最遠(yuǎn)的地方是13時,離家30千米;
(4)11時到13時他行駛了:30﹣20=10千米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.
(1)求雙曲線解析式;
(2)點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)﹣2,B點(diǎn)表示數(shù)6,若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個單位/秒的速度向左運(yùn)動;同時另一小球乙從點(diǎn)B處以2個單位/秒的速度也向左運(yùn)動,在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動,則經(jīng)過 秒,甲、乙兩小球到原點(diǎn)的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn)A,與軸交于點(diǎn)B,拋物線經(jīng)過原點(diǎn)和點(diǎn)C(4,0),頂點(diǎn)D在直線AB上。
(1)求這個拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使得以P、C、D為頂點(diǎn)的三角形與△ACD相似。若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)Q是軸上方的拋物線上的一個動點(diǎn),若,⊙M經(jīng)過點(diǎn)O,C,Q,求過C點(diǎn)且與⊙M相切的直線解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電業(yè)局要對某市區(qū)的電線路進(jìn)行巡檢,某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),檢修車一天中八次行駛記錄如下:(單位:km)-4,+7,-9,+8,+6,-5,-2,-4
(1)求收工時檢修小組在A地的什么方向?距A地多遠(yuǎn)?
(2)若每千米耗油0.5升,當(dāng)維修小組返回到A地時,問共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四座城市A,B,C,D分別位于一個邊長100km的大正方形的四個頂點(diǎn),由于各城市之間的商業(yè)往來日益頻繁,于是政府決定修建公路網(wǎng)連接它們,根據(jù)實(shí)際,公路總長設(shè)計(jì)得越短越好,公開招標(biāo)的信息發(fā)布后,一個又一個方案被提交上來,經(jīng)過初審后,擬從下面四個方案中選定一個再進(jìn)一步認(rèn)證,其中符合要求的方案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC中,AB=AC=4,∠BAC=900.點(diǎn)E為AB的中點(diǎn),以AE為對角線作正方形ADEF,連接CF并延長交BD于點(diǎn)G,則線段CG的長等于________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
問題情境
如圖,同學(xué)們用矩形紙片ABCD開展數(shù)學(xué)探究活動,其中AD=8,CD=6。
操作計(jì)算
(1)如圖(1),分別沿BE,DF剪去RtΔABE和RtΔCDF兩張紙片,如果剩余的紙片BEDF菱形,求AE的長;
圖(1) 圖(2) 圖(3)
操作探究
把矩形紙片ABCD沿對角線AC剪開,得到ΔABC和兩張紙片
(2)將兩張紙片如圖(2)擺放,點(diǎn)C和重合,點(diǎn)B,C,D在同一條直線上,連接,記的中點(diǎn)為M,連接BM,MD,發(fā)現(xiàn)ΔBMD是等腰三角形,請證明:
(3)如圖(3),將兩張紙片疊合在一起,然后將紙片繞點(diǎn)B順時針旋轉(zhuǎn)a(00<a<900),連接和,探究并直接寫出線段與的關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在同一平面內(nèi)畫兩條相交、有公共原點(diǎn)的數(shù)軸x軸和y軸,交角a≠90°,這樣就在平面上建立了一個斜角坐標(biāo)系,其中w叫做坐標(biāo)角,對于坐標(biāo)平面內(nèi)任意一點(diǎn)P,過P作y軸和x軸的平行線,與x軸、y軸相交的點(diǎn)的坐標(biāo)分別是a和b,則稱點(diǎn)P的斜角坐標(biāo)為(a,b).如圖,w=60°,點(diǎn)P的斜角坐標(biāo)是(1,2),過點(diǎn)P作x軸和y軸的垂線,垂足分別為M、N,則四邊形OMPN的面積是( )
A.B.C.D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com