【題目】定義:在同一平面內(nèi)畫(huà)兩條相交、有公共原點(diǎn)的數(shù)軸x軸和y軸,交角a90°,這樣就在平面上建立了一個(gè)斜角坐標(biāo)系,其中w叫做坐標(biāo)角,對(duì)于坐標(biāo)平面內(nèi)任意一點(diǎn)P,過(guò)Py軸和x軸的平行線,與x軸、y軸相交的點(diǎn)的坐標(biāo)分別是ab,則稱點(diǎn)P的斜角坐標(biāo)為(ab).如圖,w=60°,點(diǎn)P的斜角坐標(biāo)是(1,2),過(guò)點(diǎn)Px軸和y軸的垂線,垂足分別為MN,則四邊形OMPN的面積是( )

A.B.C.D.3

【答案】B

【解析】

添加輔助線,將四邊形OMPN轉(zhuǎn)化為直角三角形和平行四邊形,因此過(guò)點(diǎn)PPAy軸,交x軸于點(diǎn)A,過(guò)點(diǎn)PPBx軸交y軸于點(diǎn)B,易證四邊形OAPB是平行四邊形,利用平行四邊形的性質(zhì),可知OB=PA,OA=PB,由點(diǎn)P的斜角坐標(biāo)就可求出PB、PA的長(zhǎng),再利用解直角三角形分別求出PN,NBPM,AM的長(zhǎng),然后根據(jù)S四邊形OMPN=SPAM+SPBN+S平行四邊形OAPB , 利用三角形的面積公式和平行四邊形的面積公式,就可求出結(jié)果.

解:過(guò)點(diǎn)PPAy軸,交x軸于點(diǎn)A,過(guò)點(diǎn)PPBx軸交y軸于點(diǎn)B,

∴四邊形OAPB是平行四邊形,∠NBP=w=PAM=60°,

OB=PAOA=PB

∵點(diǎn)P的斜角坐標(biāo)為(1,2),

OA=1,OB=2

PB=1,PA=2

PMx軸,PNy軸,

∴∠PMA=PNB=90°,

RtPAM中,∠PAM=60°,則∠APM=30°

PA=2AM=2,即AM=1

PM=PAsin60°

PM=

SPAM=

RtPBN中,∠PBN=60°,則∠BPN=30°

PB=2BN=1,即BN=

PN=PBsin60°

PN=

SPBN=

S四邊形OMPN=SPAM+SPBN+S平行四邊形OAPB

故答案為:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華某天上午9時(shí)騎自行車(chē)離開(kāi)家,17時(shí)回家,他有意描繪了離家的距離與時(shí)間的變化情況,如圖所示.

1)圖象表示了哪兩個(gè)變量的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?

210時(shí)和11時(shí),他分別離家多遠(yuǎn)?

3)他最初到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?

411時(shí)到13時(shí)他行駛了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,對(duì)于任意實(shí)數(shù),,當(dāng)時(shí),滿足的是(  )

A. y=﹣3x+2 B. y=2x+1 C. y=2x2+1 D. y=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD、BE分別是等邊△ABC中BC、AC上的高.M、N分別在AD、BE的延長(zhǎng)線上,∠CBM=∠ACN.求證:AM=BN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)D,E為⊙O上的兩個(gè)點(diǎn),延長(zhǎng)ADC,使∠CBD=BED.

1)求證:BC是⊙O的切線;

2)當(dāng)點(diǎn)E為弧AD的中點(diǎn)且∠BED=30°時(shí),⊙O半徑為2,求DF的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1在正方形ABCD的外側(cè)作兩個(gè)等邊三角形ADEDCF,連接AFBE

(圖1) (圖2) (備用圖)

(1)請(qǐng)判斷:AFBE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;

(2)如圖2,若將條件“兩個(gè)等邊三角形ADEDCF”變?yōu)椤皟蓚(gè)等腰三角形ADEDCF,且EA=ED=FD=FC”,第(1)問(wèn)中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;

(3)若三角形ADEDCF為一般三角形,且AE=DF,ED=FC,第(1)問(wèn)中的結(jié)論都能成立嗎?請(qǐng)直接寫(xiě)出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若八個(gè)數(shù)據(jù)x1x2, x3, ……x8, 的平均數(shù)為8,方差為1,增加一個(gè)數(shù)據(jù)8后所得的九個(gè)數(shù)據(jù)x1x2, x3, …x8;8的平均數(shù)________8,方差為S2 ________1.(填“>”、“=”、“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;

(2)求建筑物CD的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點(diǎn)E,交線段DC的延長(zhǎng)線于點(diǎn)F,以EC、CF為鄰邊作平行四邊形ECFG

(1)如圖1,證明平行四邊形ECFG為菱形;

(2)如圖2,若∠ABC=90°,MEF的中點(diǎn),求∠BDM的度數(shù);

(3)如圖3,若∠ABC=120°,請(qǐng)直接寫(xiě)出∠BDG的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案