已知二次函數(shù)的圖象如圖,其對(duì)稱(chēng)軸x=-1,給出下列結(jié)果
>4ac,②abc>0,③2a+b=0,④a+b+c>0,⑤a-b+c<0,則正確的結(jié)論是(   )
A.①②③④B.②④⑤C.②③④D.①④⑤
D.

試題分析:∵拋物線(xiàn)與x軸有兩個(gè)交點(diǎn),
∴b2﹣4ac>0,即b2>4ac>,所以①正確;
∵拋物線(xiàn)開(kāi)口向上,
∴a>0,
∵對(duì)稱(chēng)軸為直線(xiàn)x=﹣<0,
∴b>0,
∵拋物線(xiàn)與y軸的交點(diǎn)在x軸下方,
∴c<0,
∴abc<0,所以②錯(cuò)誤;
又∵對(duì)稱(chēng)軸為直線(xiàn)x=﹣=﹣1,
∴2a﹣b=0,所以③錯(cuò)誤;
∵根據(jù)圖像知,當(dāng)x=1時(shí),y>0,
∴a+b+c>0,所以④正確;
∵根據(jù)圖像知,當(dāng)x=-1時(shí),y<0,
∴a-b+c<0,所以⑤正確.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在菱形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AC=8,BD=6.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)A向點(diǎn)D做勻速運(yùn)動(dòng),點(diǎn)Q沿折線(xiàn)CB—BA向點(diǎn)A做勻速運(yùn)動(dòng).
(1)點(diǎn)P將要運(yùn)行路徑AD的長(zhǎng)度為     ;點(diǎn)Q將要運(yùn)行的路徑折線(xiàn)CB—BA的長(zhǎng)度為        .
(2)當(dāng)點(diǎn)Q在BA邊上運(yùn)動(dòng)時(shí),若點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并求自變量t的取范圍;
②求當(dāng)t為何值時(shí),S有最大值,最大值是多少?
(3)如圖2,若點(diǎn)Q的速度為每秒a個(gè)單位長(zhǎng)(a≤),當(dāng)t =4秒時(shí):
①此時(shí)點(diǎn)Q是在邊CB上,還是在邊BA上呢?
②△APQ是等腰三角形,請(qǐng)求出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將二次函數(shù)y=x2的圖象向下平移一個(gè)單位,則平移以后的二次函數(shù)的解析式為(  )
A.y=x2-1B.y=x2+1
C.y=(x-1)2D.y=(x+1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

學(xué)習(xí)了函數(shù)的知識(shí)后,數(shù)學(xué)活動(dòng)小組到文具店調(diào)研一種進(jìn)價(jià)為每支2元的活動(dòng)筆的銷(xiāo)售情況。調(diào)查后發(fā)現(xiàn),每支定價(jià)3元,每天能賣(mài)出100支,而且每支定價(jià)每下降0.1元,其銷(xiāo)售量將增加10支。但是物價(jià)局規(guī)定,該活動(dòng)筆每支的銷(xiāo)售利潤(rùn)不能超過(guò)其進(jìn)價(jià)的40%。設(shè)每支定價(jià)x元,每天的銷(xiāo)售利潤(rùn)為y元。
(1)求每天的銷(xiāo)售利潤(rùn)為y與每支定價(jià)x之間的函數(shù)關(guān)系式;
(2)如果要實(shí)現(xiàn)每天75元的銷(xiāo)售利潤(rùn),那么每支定價(jià)應(yīng)為多少元?
(3)當(dāng)每支定價(jià)為多少元時(shí),可以使這種筆每天的銷(xiāo)售利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB = 6,AD = 9,點(diǎn)E是CD上的一個(gè)動(dòng)點(diǎn)(E不與D重合),過(guò)點(diǎn)E作EF∥AC,交AD于點(diǎn)F(當(dāng)E運(yùn)動(dòng)到C時(shí),EF與AC重合),把△DEF沿著EF對(duì)折,點(diǎn)D的對(duì)應(yīng)點(diǎn)是點(diǎn)G,如圖①.

⑴ 求CD的長(zhǎng)及∠1的度數(shù);
⑵ 設(shè)DE = x,△GEF與梯形ABCD重疊部分的面積為y.求y與x之間的函數(shù)關(guān)系式,并求x為何值時(shí),y的值最大?最大值是多少?
⑶ 當(dāng)點(diǎn)G剛好落在線(xiàn)段BC上時(shí),如圖②,若此時(shí)將所得到的△EFG沿直線(xiàn)CB向左平移,速度為每秒1個(gè)單位,當(dāng)E點(diǎn)移動(dòng)到線(xiàn)段AB上時(shí)運(yùn)動(dòng)停止.設(shè)平移時(shí)間為t(秒),在平移過(guò)程中是否存在某一時(shí)刻t,使得△ABE為等腰三角形?若存在,請(qǐng)直接寫(xiě)出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:
①a>0、2a+b=0、踑+b+c>0、墚(dāng)-1<x<3時(shí),y>0其中正確的個(gè)數(shù)為(  )
A.1B.2 C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a<0)的圖象如圖所示,當(dāng)-5≤x≤0時(shí),下列說(shuō)法正確的是(  )
A.有最小值-5、最大值0
B.有最小值-3、最大值6
C.有最小值0、最大值6
D.有最小值2、最大值6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖①,在平行四邊形ABCD中,AB=12,BC=6,AD⊥BD.以AD為斜邊在平行四邊形ABCD的內(nèi)部作Rt△AED,∠EAD=30°,∠AED=90°.

(1)求△AED的周長(zhǎng);
(2)若△AED以每秒2個(gè)單位長(zhǎng)度的速度沿DC向右平行移動(dòng),得到△A0E0D0,當(dāng)A0D0與BC重合時(shí)停止移動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,△A0E0D0與△BDC重疊的面積為S,請(qǐng)直接寫(xiě)出S與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍;
(3)如圖②,在(2)中,當(dāng)△AED停止移動(dòng)后得到△BEC,將△BEC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α(0°<α<180°),在旋轉(zhuǎn)過(guò)程中,B的對(duì)應(yīng)點(diǎn)為B1,E的對(duì)應(yīng)點(diǎn)為E1,設(shè)直線(xiàn)B1E1與直線(xiàn)BE交于點(diǎn)P、與直線(xiàn)CB交于點(diǎn)Q.是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出α的度數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的頂點(diǎn)坐標(biāo)是(   )
A.(1,-2)B.(1,2)
C.(0,-2)D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案