如圖,矩形OABC的長(zhǎng)OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC,可得下列結(jié)論:①∠PCB=30°;②點(diǎn)P的坐標(biāo)是(
3
2
,
3
2
);③若P、C兩點(diǎn)在拋物線y=-
4
3
x2+bx+c
上,則b的值是-
3
,c的值是1;④在③中的拋物線CP段(不包括C、P兩點(diǎn))上,存在一點(diǎn)Q,使四邊形QCAP的面積最大,最大值為
9
3
16
.其中正確的有( 。
A.①②③B.①②④C.①③④D.②③④

在Rt△OAC中,OA=
3
,OC=1,則∠OAC=30°,∠OCA=60°;
根據(jù)折疊的性質(zhì)知:OA=AP=
3
,∠ACO=∠ACP=60°;
①∵∠BCA=∠OAC=30°,且∠ACP=60°,
∴∠PCB=30°,故①正確;
②過P作PD⊥OA于D;
Rt△PAD中,∠PAD=60°,AP=
3
;
∴OD=AD=
3
2
,PD=
3
2
,
所以P(
3
2
3
2
),故②正確;
③將P、C代入拋物線的解析式中,得:
-1+
3
2
b+c=
3
2
c=1

解得
b=
3
c=1
;
故③錯(cuò)誤;
④過Q作QMy軸,交CP于M;
由③知y=-
4
3
x2+
3
x+1,
由P(
3
2
3
2
),C(0,1)易求得直線PC:y=
3
3
x+1;
設(shè)M(a,
3
3
a+1),
則Q(a,-
4
3
a2+
3
a+1),則:
QM=-
4
3
a2+
3
a+1-(
3
3
a+1)=-
4
3
a2+
2
3
3
a,
故S△QPC=
1
2
QM•|xP|=
1
2
×(-
4
3
a2+
2
3
3
a)×
3
2
=-
3
3
a2+
1
2
a,
由于S△APC=S△AOC=
3
2
,
故四邊形QCAP的面積S=S△QPC+S△APC=-
3
3
a2+
1
2
a+
3
2

則Smax=
4×(-
3
3
3
2
-
1
4
4×(-
3
3
)
=
9
3
16
;
故④正確;
所以正確的結(jié)論為①②④.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2-3x-4的圖象交x軸于A、B兩點(diǎn).
(1)若點(diǎn)P在線段AB上運(yùn)動(dòng),作PQ⊥x軸,交拋物線于點(diǎn)Q,求PQ的最大值;
(2)已知點(diǎn)D(5,6)在拋物線上,若點(diǎn)M在線段AD上運(yùn)動(dòng),作MN⊥x軸,交拋物線于點(diǎn)N,求MN的最大值;
(3)在(2)的運(yùn)動(dòng)過程中,求△ADN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,-3),且頂點(diǎn)坐標(biāo)為(-1,-4).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的圖象與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線的方程C1:y=-
1
m
(x+2)(x-m)(m>0)與x軸相交于點(diǎn)B、C,與y軸相交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).
(1)若拋物線C1過點(diǎn)M(2,2),求實(shí)數(shù)m的值;
(2)在(1)的條件下,求△BCE的面積;
(3)在(1)條件下,在拋物線的對(duì)稱軸上找一點(diǎn)H,使BH+EH最小,并求出點(diǎn)H的坐標(biāo);
(4)在第四象限內(nèi),拋物線C1上是否存在點(diǎn)F,使得以點(diǎn)B、C、F為頂點(diǎn)的三角形與△BCE相似?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:一次函數(shù)y=-x+m的圖象與二次函數(shù)y=ax2+bx-4的圖象交于x軸上一點(diǎn)A,且交y軸于點(diǎn)B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求一次函數(shù)的解析式;
(2)設(shè)二次函數(shù)y=ax2+bx-4的對(duì)稱軸為直線x=n(n<0),n是方程2x2-3x-2=0的一個(gè)根,求二次函數(shù)的解析式;
(3)在(2)條件下,設(shè)二次函數(shù)交y軸于點(diǎn)D,在x軸上有一點(diǎn)C,使以點(diǎn)A、B、C組成的三角形與△ADB相似.試求出C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,某校小農(nóng)場(chǎng)要蓋一排三間長(zhǎng)方形的羊圈,打算一面利用一堵舊墻,其余各面用木棍圍成柵欄,該校計(jì)劃用木棍圍出總長(zhǎng)為24m的柵欄、設(shè)每間羊圈的長(zhǎng)為xm.
(1)請(qǐng)你用含x的關(guān)系式來(lái)表示圍成三間羊圈所利用的舊墻的總長(zhǎng)度L=______,三間羊圈的總面積S=______;
設(shè)寬為x,(2)S可以看成x的______,這里自變量x的取值范圍是______;
(3)請(qǐng)計(jì)算,當(dāng)羊圈的長(zhǎng)分別為2m、3m、4m和5m時(shí),羊圈的總面積分別為______m2、______m2、______m2、______m2,在這些數(shù)中,x取______m時(shí),面積S最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長(zhǎng)為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是(  )
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

體育課上,老師訓(xùn)練學(xué)生的項(xiàng)目是投籃,假設(shè)一名同學(xué)投籃后,籃球運(yùn)行的軌跡是一段拋物線,將所得軌跡形成的拋物線放在如圖所示的坐標(biāo)系中,得到解析式為y=-
1
5
x2+
2
5
x+3.3(單位:m).請(qǐng)你根據(jù)所得的解析式,回答下列問題:
(1)球在空中運(yùn)行的最大高度為多少米;
(2)如果一名學(xué)生跳投時(shí),球出手離地面的高度為2.25m,請(qǐng)問他距籃球筐中心的水平距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

2011年長(zhǎng)江中下游地區(qū)發(fā)生了特大旱情.為抗旱保豐收,某地政府制定了農(nóng)戶投資購(gòu)買抗旱設(shè)備的補(bǔ)貼辦法,其中購(gòu)買Ⅰ型、Ⅱ型抗旱設(shè)備投資的金額與政府補(bǔ)的額度存在下表所示的函數(shù)對(duì)應(yīng)關(guān)系.
型 號(hào)
金 額
投資金額x(萬(wàn)元)
Ⅰ型設(shè)備Ⅱ型設(shè)備
x5x24
補(bǔ)貼金額y(萬(wàn)元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2
(1)分別求y1和y2的函數(shù)解析式;
(2)有一農(nóng)戶同時(shí)對(duì)Ⅰ型、Ⅱ型兩種設(shè)備共投資10萬(wàn)元購(gòu)買,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大補(bǔ)貼金額的方案,并求出按此方案能獲得的最大補(bǔ)貼金額.

查看答案和解析>>

同步練習(xí)冊(cè)答案