如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設(shè)CD的長為x,四邊形ABCD的面積為y,則y與x之間的函數(shù)關(guān)系式是(  )
A.y=
2
25
x2
B.y=
4
25
x2
C.y=
2
5
x2
D.y=
4
5
x2

作AE⊥AC,DE⊥AE,兩線交于E點(diǎn),作DF⊥AC垂足為F點(diǎn),
∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE
∴∠BAC=∠DAE
又∵AB=AD,∠ACB=∠E=90°
∴△ABC≌△ADE(AAS)
∴BC=DE,AC=AE,
設(shè)BC=a,則DE=a,DF=AE=AC=4BC=4a,
CF=AC-AF=AC-DE=3a,
在Rt△CDF中,由勾股定理得,
CF2+DF2=CD2,即(3a)2+(4a)2=x2,
解得:a=
x
5
,
∴y=S四邊形ABCD=S梯形ACDE=
1
2
×(DE+AC)×DF
=
1
2
×(a+4a)×4a
=10a2
=
2
5
x2
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點(diǎn),與y軸交于點(diǎn)B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點(diǎn)為D,△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.
(3)若點(diǎn)P為第一象限拋物線上一動(dòng)點(diǎn),連接BP、PE,求四邊形ABPE面積的最大值,并求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=mx2+nx+p與y=x2+6x+5關(guān)于y軸對稱,與y軸交于點(diǎn)M,與x軸交于點(diǎn)A和B.
(1)y=mx2+nx+p的解析式為______,試猜想出與一般形式拋物線y=ax2+bx+c關(guān)于y軸對稱的二次函數(shù)解析式為______.
(2)A,B的中點(diǎn)是點(diǎn)C,則sin∠CMB=______.
(3)如果過點(diǎn)M的一條直線與y=mx2+nx+p圖象相交于另一點(diǎn)N(a,b),a,b滿足a2-a+m=0,b2-b+m=0,則點(diǎn)N的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2經(jīng)過點(diǎn)(1,5),當(dāng)y=15時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=-mx2+4m的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)B、C在x軸上,A、D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi).
(1)求二次函數(shù)的解析式;
(2)設(shè)點(diǎn)A的坐標(biāo)為(x,y),試求矩形ABCD的周長P關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結(jié)論.
(4)求出當(dāng)x為何值時(shí)P有最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC,可得下列結(jié)論:①∠PCB=30°;②點(diǎn)P的坐標(biāo)是(
3
2
3
2
);③若P、C兩點(diǎn)在拋物線y=-
4
3
x2+bx+c
上,則b的值是-
3
,c的值是1;④在③中的拋物線CP段(不包括C、P兩點(diǎn))上,存在一點(diǎn)Q,使四邊形QCAP的面積最大,最大值為
9
3
16
.其中正確的有( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=(x+1)2+k與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-3)
(1)求拋物線的對稱軸及k的值;
(2)拋物線的對稱軸上存在一點(diǎn)P,使得PA+PC的值最小,求此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)M是拋物線上的一動(dòng)點(diǎn),且在第三象限.
①當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),△AMB的面積最大?求出△AMB的最大面積及此時(shí)點(diǎn)M的坐標(biāo);
②當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以邊長為1的正方形ABCO的兩邊OA、OC所在直線為軸建立坐標(biāo)系,點(diǎn)O為原點(diǎn).
(1)求以A為頂點(diǎn),且經(jīng)過點(diǎn)C的拋物線解析式;
(2)求(1)中的拋物線與對角線OB交于點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某養(yǎng)殖專業(yè)戶計(jì)劃利用房屋的一面墻修造如圖所示的長方體水池,培育不同品種的魚苗.他已準(zhǔn)備可以修高為3m.長30m的水池墻的材料,圖中EF與房屋的墻壁互相垂直,設(shè)AD的長為xm.(不考慮水池墻的厚度)
(1)請直接寫出AB的長(用含有x的代數(shù)式表示);
(2)試求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果房屋的墻壁可利用的長度為10.5m,請利用函數(shù)圖象與性質(zhì)求V的最大值.

查看答案和解析>>

同步練習(xí)冊答案