【題目】如圖,半圓的半徑OC=2,線段BC與CD是半圓的兩條弦,BC=CD,延長CD交直徑BA的延長線于點E,若AE=2,則弦BD的長為_______.
【答案】
【解析】
連接OD,AD,根據(jù)已知可得OC平分∠BCD,根據(jù)BC=DC,即可得到BD⊥CO,根據(jù)已知可以推得CO⊥BD,再根據(jù)AB為直徑,繼而可得AD//CO,結(jié)合AE=AO=2,則可得AD=1,在Rt△ABD中,利用勾股定理即可求得BD的長.
連接OD,AD,
∵BC=CD,BO=DO,
∴∠1=∠2,∠3=∠DBO,
∴∠1+∠3=∠2+∠DBO,∴∠CDO=∠CBO,
∵OC=OB=OD,
∴∠BCO=∠DCO,
∴CO為等腰△BCD的角平分線,
∴CO⊥BD,
∵AB為直徑,
∴∠ADB=90°,
∴∠3+∠5=∠3+∠4=90°,
∴∠4=∠5,
∴AD//CO,
∵AE=AO=2,∴AD=CO=1,
在Rt△ABD中,BD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,有兩個△ABC和△A′B′C′,其中∠C+∠C′=180°,且兩個三角形不相似.能否分別用一條直線分割這兩個三角形,使△ABC所分割成的兩個三角形與△A′B′C′所分割成的兩個三角形分別相似?如果能,畫出分割線,并標(biāo)明相等的角;如果不能,請說明理由.
小明經(jīng)過思考后,嘗試從特殊情況入手,畫出了當(dāng)∠C=∠C′=90°時的分割線:
(1)小明在完成畫圖后給出了如下證明思路,請補(bǔ)全他的證明思路.
由畫圖可得△BCD∽△ .
由∠A+∠B=90°,∠A′C′D′+∠B′C′D′=90°,∠A′C′D′=∠B,得 .
同理可得:∠B′=∠ACD.
由此得:△ACD∽△ .
(2)當(dāng)∠C>∠C′時,請在圖①的兩個三角形中分別畫出滿足題意的分割線,并標(biāo)明相等的角.(不寫畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組同學(xué)進(jìn)行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為45°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走4米至大樹腳底點D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1⊥x軸于點(1,0),直線l2⊥x軸于點(2,0),直線l3⊥x軸于點(3,0),…,直線ln⊥x軸于點(n,0)(其中n為正整數(shù)).函數(shù)y=x的圖象與直線l1,l2,l3,…,ln分別交于點A1,A2,A3,…,An;函數(shù)y=2x的圖象與直線l1,l2,l3,…,ln分別交于點B1,B2,B3,…,Bn.如果△OA1B1的面積記作S,四邊形A1A2B2B1的面積記作S1,四邊形A2A3B3B2的面積記作S2,…,四邊形AnAn+1Bn+1Bn的面積記作Sn,那么S2018=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在△ABC中,∠ACB=90°,以AB為直徑作⊙O;過點C作直線CD交AB的延長線于點D,且BD=OB,CD=CA.
(1)求證:CD是⊙O的切線.
(2)如圖(2),過點C作CE⊥AB于點E,若⊙O的半徑為8,∠A=30°,求線段BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了這樣一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代語言表述為:如圖,AB為⊙O的直徑,弦CD⊥AB于點E,AE = 1寸,CD = 10寸,求直徑AB的長.請你解答這個問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A,D兩點,并經(jīng)過B點,對稱軸交x軸于點C,連接BD,BC,已知A點坐標(biāo)是(2,0),B點的坐標(biāo)是(8,6)
(1)求二次函數(shù)的解析式.
(2)求該函數(shù)圖象的頂點坐標(biāo)及D點的坐標(biāo).
(3)拋物線上有一個動點P,與A,D兩點構(gòu)成△ADP,是否存在S△ADP=S△BCD?若存在,直接寫出所有符合條件的點P的坐標(biāo);若不存在.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DA∶AB=1∶2.
(1)求∠CDB的度數(shù);
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮玩一個游戲:三張大小、質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字2,3,4(背面完全相同),現(xiàn)將標(biāo)有數(shù)字的一面朝下.小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和.若和為奇數(shù),則小明勝;若和為偶數(shù),則小亮勝.
(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率.
(2)你認(rèn)為這個游戲規(guī)則對雙方公平嗎?說說你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com