【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DA∶AB=1∶2.
(1)求∠CDB的度數(shù);
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關(guān)系,并證明.
【答案】(1);(2)直線EB與相切,證明見解析.
【解析】試題分析:(1)根據(jù)DA:AB=1:2,得到DA等于圓的半徑.連接過切點的半徑,構(gòu)造直角三角形,利用解直角三角形的知識求解;
(2)連接OC.根據(jù)(1)中的結(jié)論,可以知道直角有一個角為30°.根據(jù)圓周角定理發(fā)現(xiàn)得到進(jìn)一步得到等邊.則根據(jù)切線的判定即可證明.
試題解析:(1)如圖,連接OC,
∵CD是的切線,
設(shè)的半徑為R,則AB=2R,
∵DA:AB=1:2,
∴DA=R,DO=2R.
在Rt△DOC中,
即
(2)直線EB與相切,
證明:連接OC,
由(1)可知
∵OC=OB,
∴∠CBD=∠CDB.
∴CD=CB.
∵CD是的切線,
又∵CD=CE,
∴CB=CE.
∴△CBE為等邊三角形,
∴EB是的切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)活動中心為中老年舞蹈隊統(tǒng)一隊服和道具,準(zhǔn)備購買 10 套某種品牌的舞蹈鞋,每雙舞蹈鞋配 x(x≥2)個舞蹈扇,供舞蹈隊隊員使用.該社區(qū)附近 A,B 兩家超市都有這種品牌的舞蹈鞋和舞蹈扇出售,且每雙舞蹈鞋的標(biāo)價均為 30 元,每個舞蹈扇的標(biāo)價為 3 元,目前兩家超市同時在做促銷活動:
A 超市:所有商品均打九折(按標(biāo)價的 90%)銷售;
B 超市:買一雙舞蹈鞋送 2 個舞蹈扇.
設(shè)在 A 超市購買舞蹈鞋和舞蹈扇的費(fèi)用為(元),在 B 超市購買舞蹈鞋和舞蹈扇的費(fèi)用為 (元).請解答下列問題:
(1)分別寫出 , 與 x 之間的關(guān)系式;
(2)若該活動中心只在一家超市購買,你認(rèn)為在哪家超市購買更劃算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐標(biāo)為(6,n)。線段OA=5,E為x軸上一點,且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)自變量x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線y=(k<0)經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標(biāo)為(﹣6,4),則△AOC的面積為( 。
A. 12 B. 9 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)八年級組織了一次“漢字聽寫比賽”,每班選25名同學(xué)參加比賽,成績分為A,B,C,D四個等級,其中A等級得分為100分,B等級得分為85分,C等級得分為75分,D等級得分為60分,語文教研組將八年級一班和二班的成績整理并繪制成如下的統(tǒng)計圖,請根損換供的信息解答下列問題.
(1)把一班比賽成統(tǒng)計圖補(bǔ)充完整;
(2)填表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
一班 | a | b | 85 |
二班 | 84 | 75 | c |
表格中:a=______,b=______,c=_______.
(3)請從以下給出的兩個方面對這次比賽成績的結(jié)果進(jìn)行分析:
①從平均數(shù)、眾數(shù)方面來比較一班和二班的成績;
②從B級以上(包括B級)的人數(shù)方面來比較-班和二班的成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)了二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2 =(1+)2.善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a,b,m,n均為正整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分形如a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當(dāng)a,b,m,n均為正整數(shù)時,若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a=__________,b=__________;
(2)利用所探索的結(jié)論,找一組正整數(shù)a,b,m,n填空:________+________=(________+________)2;
(3)若a+4=(m+n)2,且a,m,n均為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的小正方形組成的網(wǎng)格,直線是一條網(wǎng)格線,點,在格點上,的三個頂點都在格點(網(wǎng)格線的交點)上.
(1)作出關(guān)于直線對稱的;
(2)在直線上畫出點,使四邊形的周長最。
(3)在這個網(wǎng)格中,到點和點的距離相等的格點有_________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,P是對角線AC上的一點,點E在BC的延長線上,且PE=PB.
(1)當(dāng)PC=CE時,求∠CDP的度數(shù);
(2)試用等式表示線段PB、BC、CE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com